Chem. Ber. 103, 1132-1156 (1970)

Hermann Irngartinger, Leslie Leiserowitz und Gerhard M. J. Schmidt

Zur Konjugation in makrocyclischen Bindungssystemen, XVII<sup>1)</sup>

# Kristall- und Molekülstrukturen von Hexa-m-phenylen und Penta-m-phenylen

Aus dem Institut für Organische Chemie der Universität Heidelberg und dem Department of Chemistry, Weizmann Institute of Science, Rehovot, Israel (Eingegangen am 3. Dezember 1969)

Die Kristallstrukturen von Hexa-m-phenylen (1) und Penta-m-phenylen (2) wurden anhand dreidimensionaler ( $\sin\Theta/\lambda \leqslant 0.66$ ) Zählerdaten gelöst, die nach der Differenz-Filter-Methode bei Raumtemperatur mit  $Mo_{K\alpha}$ -Strahlung auf einem Siemens-Diffraktometer gemessen worden waren.

Die Strukturen wurden mit einem Block-Matrix-Kleinste-Quadrate-Verfahren zu R=0.047 (1) und 0.050 (2) verfeinert; die Standardabweichungen der Bindungslängen und -winkel betragen  $0.002_4$  Å bzw.  $0.1_5^{\circ}$ . Bei Annahme der Symmetrie m anstelle von 6 der Benzolkerne belaufen sich die Streuungen chemisch gleichwertiger Bindungen und Winkel auf 0.002 Å und  $0.3^{\circ}$ . Die Abweichungen der beobachteten Strukturen von den idealisierten Konformationen (1: $\overline{3}$  m; 2:2) werden intermolekularen Packungseffekten zugeschrieben. Der "overcrowding effect" in beiden Molekeln (1: C. . . C 2.958 – 2.968; H. . . H 2.19 – 2.30 Å. 2:2.801 – 2.839; 1.84 – 2.19 Å) erzeugt eine Verdrillung von etwa 18° um die Achsen, die durch die Mittelpunkte der exocyclischen Bindungen gehen, und eine Deformation der Benzolkerne. Die Längen der exocyclischen Bindungen (1: 1.487; 2: 1.495 Å) werden diskutiert. Ein energetisch günstiger Inversionsmechanismus von 2 wird zur Erklärung der kernmagnetischen Äquivalenz der inneren Protonen vorgeschlagen.

### Conjugation in Macrocyclic Systems, XVII 1)

## Overcrowded Compounds, Part VIII<sup>2)</sup>. The Crystal and Molecular Structures of Hexa-mphenylene and Penta-m-phenylene

The crystal structures of hexa-m-phenylene (1) and penta-m-phenylene (2) have been solved from three-dimensional ( $\sin \Theta/\lambda \le 0.66$ ) counter data collected at room temperature with  $Mo_{K\alpha}$  on a Siemens diffractometer by the balanced-filter method. The structures have been refined by a block-diagonal matrix least-squares method to R = 0.047 (1) and 0.050 (2); the e. s. d. of the bond lengths and angles are  $0.002_4$  Å and  $0.1_5^\circ$ ; the scatters of chemically equivalent bonds and angles, on the assumption of symmetry m rather than 6 of the benzene rings, are 0.002 Å and  $0.3^\circ$ . The deviations of the observed structures from the idealised conformations (1:  $\overline{3}$  m; 2: 2) are discussed and assigned to intermolecular packing effects.

<sup>1)</sup> XVI. Mitteil.: H. Irngartinger, L. Leiserowitz und G. M. J. Schmidt, Chem. Ber. 103, 1119 (1970), vorstehend.

<sup>2)</sup> Part VII: F. L. Hirshfeld, J. chem. Soc. [London] 1963, 2126.

Relief from overcrowding in the two systems (C...C 2.958 - 2.968 Å, H...H 2.19 - 2.30 Å, 1; 2.801 - 2.839, 1.84 - 2.19 Å, 2) is achieved by a twist of the order of 18° about an axis joining the midpoints of exocyclic bonds and deformations of the benzene rings. The lengths of the exocyclic bonds (1.487, 1; 1.495 Å, 2) are discussed. An energetically cheap mechanism of inversion of 2 is suggested to account for the identity (n. m. r.) of the inner protons.

#### **Einleitung**

Im Zusammenhang mit dem Problem der Aromatizität makrocyclischer Konjugationssysteme synthetisierten *Staab* und Mitarbeiter eine Anzahl von Verbindungen mit cyclisch verknüpften Benzolkernen, die u. a. die Frage klären sollten, inwieweit eine cyclische Konjugation die der benzoiden Untereinheiten zu durchbrechen imstande ist. Eine Reihe von Poly-m-phenylenen (n = 5, 6, 8, 10)<sup>3)</sup> und Methylderivaten<sup>4)</sup> sollte in dieser Richtung auf ihre Eigenschaften untersucht werden. Die UV-Spektren dieser Verbindungen waren dem von Biphenyl sehr verwandt. Aus den Kernresonanzdaten läßt sich keine Abschirmung der inneren Protonen infolge eines makrocyclischen Ringstromes entnehmen<sup>5)</sup>. Beide Ergebnisse deuten darauf hin, daß benzoide Untereinheiten vorherrschen. Andererseits ist aufgrund des ESR-Spektrums des Hexa-m-phenylen-Anions<sup>6)</sup> die Spindichte des Radikalelektrons gleichmäßig auf alle sechs Ringe verteilt.

Eine genaue Kenntnis der Molekül-Konformation (Bindungslängen, Planarität, intramolekulare Abstände) dieser Verbindungen würde zur weiteren Klärung der erwähnten Fragenkomplexe beitragen. Daher wurden Röntgenstrukturuntersuchungen von Hexa-m-phenylen (1) und Penta-m-phenylen (2) unternommen, während für das 5.5′.5″.5″.′.5″.′.5″.′.-Hexamethyl-hexa-m-phenylen (3) eine Packungsbetrachtung gegeben wird.

Auf Grund der kurzen Abstände der inneren Kohlenstoffatome eines theoretischplanaren Moleküls und der Überlappung der Wasserstoffatome im Inneren von 1

<sup>3)</sup> H. A. Staab und F. Binnig, Chem. Ber. 100, 293, 889 (1967).

<sup>4)</sup> H. Bräunling, F. Binnig und H. A. Staab, Chem. Ber. 100, 880 (1967).

<sup>5)</sup> Vgl. H. A. Staab, H. Bräunling und K. Schneider, Chem. Ber. 101, 879 (1968).

<sup>6)</sup> P. H. H. Fischer, K. H. Hausser und H. A. Staab, Z. Naturforsch. 19a, 816 (1964).

und 2 boten diese Substanzen eine gute Gelegenheit zum Studium des "overcrowding effect"<sup>7</sup>). Die sterische Spannung in 2 ließ die Konfigurationsaufklärung besonders interessant erscheinen.

Für eine derartige Untersuchung sind diese Verbindungen wegen ihrer hohen Stabilität und ihres hervorragenden Kristallisationsvermögens besonders gut geeignet. Sie lassen sich alle bis zu ihren relativ hohen Schmelzpunkten unzersetzt erhitzen  $(1:510^{\circ}, 2:344^{\circ}, 3:456^{\circ})$  und zeigen eine außerordentliche Stabilität bei Elektronenbeschuß im Massenspektrographen<sup>8</sup>). 1 erleidet auch keine Veränderung bei  $\gamma$ - und Neutronenbestrahlung<sup>3</sup>).

1 und 2 sind wegen ihrer hohen Symmetrie lohnende Objekte kristallographischer Untersuchungen, da chemisch gleichwertige Bindungen mehrmals innerhalb derselben Verbindung unabhängig bestimmt und ihre Genauigkeit durch Mittelungsverfahren erhöht werden können. Der gleiche Gesichtspunkt spielt eine Rolle bei der Bestimmung von Elektronendichten in den Bindungen, über die in einer weiteren Veröffentlichung berichtet wird<sup>9)</sup>.

#### Ergebnisse

Die Atomkoordinaten und die thermischen Parameter sind zusammen mit ihren geschätzten Standardabweichungen (e. s. d.) in Tab. 1 und 2 aufgeführt. Die experimentell ermittelten Bindungslängen und -winkel und ihre e. s. d. zeigt Tab. 3. Die gemittelten Standardabweichungen der C-C-Bindungslängen und ihre C-C-C-Winkel betragen  $0.002_6$  Å und  $0.1_6^{\circ}$  für 1,  $0.002_1$  Å und  $0.1_3^{\circ}$  für 2. Die Bindungslängen in den Benzolringen haben mit einer angenommenen Symmetrie 6 Streuwerte  $\mu(r)$  von  $0.006_7$  (1) und  $0.004_6$  Å (2). Diese sind also etwas größer als die gemittelten Standardabweichungen. Wendet man nun einen anderen Mittelungsweg an, indem



Bezeichnung der Atome und Winkel in 1 und 2

man durch die Atome A und D jedes Benzolrings eine Spiegelebene legt und die Bindungspaare (AB, AF), (BC, EF) und (CD, DE) als "chemisch gleichwertig" betrachtet, führt dies zu folgenden Streuwerten  $\mu$  (r) innerhalb dieser Bindungspaare: 0.0016, 0.0007, 0.0017 (1) und 0.0037, 0.0031 und 0.0029 Å (2).  $\mu$  (r) der exocyclischen Bindungen BF' sind 0.0004 (1) und 0.0017 Å (2). In ähnlicher Weise beträgt die Winkelstreuung  $\mu$  ( $\omega$ ) für die endocyclischen Winkel der Benzolringe mit angenommener Symmetrie 6: 1.64° (1) und 2.75° (2). Werden die Winkel in gleicher Weise wie oben, d. h. ( $\beta$ ,  $\zeta$ ), ( $\gamma$ ,  $\varepsilon$ ), ( $\alpha$ ) und ( $\delta$ ) gemittelt, ergeben sich folgende Streuwerte  $\mu$  ( $\omega$ ): 0.16, 0.15, 0.18 und 0.62° (1) und 0.34, 0.27, 0.29 und 0.28° (2).

<sup>7)</sup> z. B. F. L. Hirshfeld, S. Sandler und G. M. J. Schmidt, J. chem. Soc. [London] 1963, 2108.

<sup>8)</sup> H. A. Staab und C. Wünsche, Chem. Ber. 101, 887 (1968).

<sup>9)</sup> H. Irngartinger, L. Leiserowitz und G. M. J. Schmidt, J. chem. Soc. [London] B, im Druck.

Tab. 1a. Atomkoordinaten (Å) von 1 und ihre Standardabweichungen bezogen auf die Achsen a, b, c

| Ring | Atom       | x        | σ  | у       | σ  | z       | σ  |
|------|------------|----------|----|---------|----|---------|----|
| I    | Α          | 0.18345  | 15 | 0.06582 | 12 | 0.32343 | 28 |
|      | В          | 0.28749  | 14 | 0.05742 | 12 | 0.27140 | 27 |
|      | C          | 0.36994  | 16 | 0.11052 | 13 | 0.38007 | 33 |
|      | D          | 0.34634  | 16 | 0.16991 | 14 | 0.53291 | 33 |
|      | E<br>F     | 0.24242  | 16 | 0.17808 | 12 | 0.58181 | 31 |
|      | F          | 0.15838  | 14 | 0.12534 | 11 | 0.47683 | 26 |
| H    | Α          | -0.04311 | 14 | 0.11073 | 11 | 0.36332 | 28 |
|      | В          | 0.04564  | 14 | 0.13231 | 11 | 0.52535 | 26 |
|      | C          | 0.02420  | 17 | 0.16253 | 12 | 0.72917 | 30 |
|      | D          | -0.08217 | 18 | 0.17216 | 11 | 0.76410 | 32 |
|      | E          | -0.16915 | 17 | 0.15138 | 12 | 0.60092 | 31 |
|      | F          | -0.15054 | 14 | 0.11929 | 11 | 0.39672 | 27 |
| Ш    | Α          | -0.22895 | 14 | 0.02974 | 12 | 0.07046 | 29 |
|      | В          | -0.24112 | 14 | 0.09648 | 11 | 0.21545 | 29 |
|      | C          | -0.33853 | 16 | 0.14280 | 13 | 0.17874 | 34 |
|      | D          | -0.41989 | 17 | 0.12149 | 15 | 0.00326 | 36 |
|      | E          | -0.40603 | 16 | 0.05598 | 14 | 0.14119 | 35 |
|      | F          | -0.30878 | 13 | 0.00934 | 11 | 0.11087 | 28 |
| I    | a          | 0.1270   | 14 | 0.0264  | 12 | 0.2539  | 29 |
|      | <b>c</b> . | 0.4428   | 15 | 0.1040  | 12 | 0.3440  | 29 |
|      | d          | 0.4025   | 15 | 0.2077  | 12 | 0.6070  | 29 |
|      | e          | 0.2239   | 13 | 0.2225  | 12 | 0.6901  | 28 |
| 11   | a          | 0.0286   | 14 | 0.0946  | 12 | 0.2165  | 31 |
|      | c          | 0.0878   | 14 | 0.1758  | 12 | 0.8470  | 30 |
|      | d          | -0.0956  | 13 | 0.1956  | 12 | 0.9053  | 29 |
|      | e          | -0.2453  | 16 | 0.1554  | 12 | 0.6284  | 29 |
| ш    | a          | -0.1630  | 14 | -0.0028 | 12 | 0.0930  | 29 |
| ***  | c          | -0.3485  | 13 | 0.1933  | 12 | 0.2775  | 27 |
|      | d          | -0.4890  | 15 | 0.1582  | 13 | -0.0264 | 31 |
|      | e          | -0.4653  | 14 | 0.0406  | 12 | 0.2733  | 29 |

Tab. 1b. Atomkoordinaten (Å) von 2 und ihre Standardabweichungen bezogen auf die Achsen a, b, c

| Ring | Atom             | x       | σ  | У        | σ  | z       | σ |
|------|------------------|---------|----|----------|----|---------|---|
| Ĭ    | Α                | 0.19604 | 9  | 0.30346  | 24 | 0.16755 | 6 |
|      | В                | 0.19823 | 9  | 0.12424  | 24 | 0.12668 | 6 |
|      | C                | 0.12499 | 11 | -0.11317 | 30 | 0.07032 | 6 |
|      | D                | 0.05340 | 11 | -0.26966 | 33 | 0.05800 | 7 |
|      | E                | 0.04954 | 10 | -0.42923 | 30 | 0.10210 | 7 |
|      | F                | 0.12163 | 9  | -0.44279 | 24 | 0.15923 | 6 |
| П    | Α                | 0.16137 | 8  | -0.43916 | 24 | 0.26976 | 6 |
|      | В                | 0.12081 | 8  | -0.56618 | 23 | 0.21478 | 6 |
|      | $\mathbf{C}$     | 0.08146 | 9  | 0.78963  | 25 | 0.21708 | 8 |
|      | D                | 0.08413 | 9  | -0.87270 | 25 | 0.27295 | 8 |
|      | E                | 0.12700 | 9  | -0.74546 | 25 | 0.32734 | 7 |
|      | F                | 0.16827 | 8  | -0.52422 | 23 | 0.32660 | 6 |
| Ш    | Α                | 0.28851 | 8  | -0.22923 | 25 | 0.37882 | 6 |
|      | В                | 0.21862 | 8  | -0.36770 | 23 | 0.38092 | 6 |
|      | $\boldsymbol{C}$ | 0.19612 | 10 | -0.32988 | 29 | 0.43097 | 6 |
|      | D                | 0.24069 | 11 | -0.15425 | 33 | 0.47455 | 7 |
|      | E                | 0.30459 | 10 | 0.00358  | 30 | 0.46811 | 6 |
|      | F                | 0.32816 | 8  | -0.03623 | 25 | 0.41862 | 5 |

Tab. 1b (Fortsetzung)

| Ring | Atom         | x       | σ  | y       | σ  | Z       | σ |
|------|--------------|---------|----|---------|----|---------|---|
| IV   | A            | 0.35615 | 8  | 0.16899 | 24 | 0.33752 | 6 |
|      | В            | 0.38498 | 8  | 0.13073 | 23 | 0.40039 | 5 |
|      | С            | 0.46375 | 9  | 0.24462 | 27 | 0.43855 | 6 |
|      | D            | 0.51145 | 10 | 0.37928 | 29 | 0.41268 | 7 |
|      | E            | 0.48468 | 10 | 0.39706 | 27 | 0.34955 | 7 |
|      | F            | 0.40561 | 8  | 0.28761 | 23 | 0.31017 | 6 |
| V    | Α            | 0.31021 | 10 | 0.09724 | 26 | 0.21210 | 6 |
|      | В            | 0.37339 | 8  | 0.27319 | 24 | 0.24184 | 6 |
|      | C            | 0.40075 | 9  | 0.41900 | 26 | 0.20461 | 7 |
|      | D            | 0.36330 | 10 | 0.38480 | 29 | 0.14139 | 7 |
|      | $\mathbf{E}$ | 0.29906 | 10 | 0.21037 | 28 | 0.11337 | 6 |
|      | F            | 0.27087 | 9  | 0.06026 | 24 | 0.14906 | 6 |
| 1    | a            | 0.2483  | 8  | -0.3227 | 21 | 0.2068  | 5 |
|      | c            | 0.1233  | 10 | 0.0128  | 29 | 0.0407  | 7 |
|      | d            | 0.0029  | 11 | -0.2526 | 29 | 0.0173  | 7 |
|      | c            | 0.0041  | 11 | 0.5224  | 29 | 0.0952  | 7 |
| H    | a            | 0.1846  | 8  | -0.2735 | 24 | 0.2679  | 5 |
|      | e            | 0.0517  | 10 | 0.8840  | 26 | 0.1785  | 6 |
|      | d            | 0.0574  | 9  | 1.0281  | 27 | 0.2747  | 6 |
|      | e            | 0.1303  | 9  | 0.8107  | 26 | 0.3663  | 6 |
| III  | a            | 0.3105  | 8  | -0.2635 | 23 | 0.3471  | 5 |
|      | c            | 0.1468  | 9  | -0.4236 | 26 | 0.4343  | 6 |
|      | d            | 0.2234  | 10 | -0.1313 | 26 | 0.5091  | 7 |
|      | e            | 0.3319  | 10 | 0.1372  | 27 | 0.4977  | 7 |
| IV   | a            | 0.2979  | 9  | 0.1076  | 23 | 0.3115  | 6 |
|      | c            | 0.4844  | 9  | 0.2284  | 28 | 0.4825  | 7 |
|      | d            | 0.5689  | 10 | 0.4555  | 28 | 0.4400  | 7 |
|      | e            | 0.5212  | 10 | 0.4816  | 29 | 0.3317  | 6 |
| V    | a            | 0.2890  | 10 | 0.0083  | 27 | 0.2368  | 6 |
|      | С            | 0.4444  | 10 | 0.5478  | 27 | 0.2243  | 6 |
|      | d            | 0.3819  | 10 | 0.4904  | 28 | 0.1162  | 7 |
|      | ė            | 0.2732  | 10 | 0.1910  | 28 | 0.0675  | 7 |

Tab. 2a. Thermische Parameter ( $\times 10^4 \text{ Å}^2$ ) von 1 und ihre Standardabweichungen bezogen auf die Achsen a, b, c

| Ring | Ato | m <i>u</i> <sup>11</sup> | σ        | u <sup>22</sup> | σ        | u <sup>33</sup> | σ        | u <sup>12</sup> | σ        | u <sup>23</sup> | σ        | $u^{13}$ | σ        | Atom | $\overline{U}^2$ | σ   |
|------|-----|--------------------------|----------|-----------------|----------|-----------------|----------|-----------------|----------|-----------------|----------|----------|----------|------|------------------|-----|
| 1    | A   | 426                      | 11       | 370             | 10       | 378             | 10       | -20             | 9.       | 10              | 8        | 7        | 8        |      | ~- 36            | 54  |
|      | В   | 413                      | 11       | 436             | [1       | 376             | 10       | 7               | 9        | 62              | 8        | 7        | 8        | c    | 173              | 56  |
|      | C   | 415                      | 11       | 563             | 13<br>13 | 519             | 12<br>12 | - 35            | 10<br>11 | 54              | 10<br>10 | 98       | 10<br>10 | ď    | 256              | 55  |
|      | E   | 524<br>553               | 13<br>12 | 561<br>454      | 11       | 495<br>396      | 11       | -118<br>-24     | 10       | - 21<br>- 21    | 9        | - 46     | 9        | e    | 194              | 52  |
|      | F   | 489                      | 11       | 354             | 10       | 316             | 9        | 23              | 8        | 40              | 8        | 6        | 8        |      |                  |     |
| 11   | A   | 501                      | 11       | 334             | 10       | 324             | 10       | 35              | 8        | - 5             | 8        | 109      | 8        | a    | 5                | 53  |
|      | В   | 525                      | 11       | 298             | 9        | 322             | 9        | 23              | 8        | 13              | 8        | 59       | 8        | c    | 185              | 51  |
|      | C   | 672                      | 14       | 372             | 11       | 339             | 10       | 6               | 10       | ~- 5            | 8        | 65       | 10       | đ    | 173              | 50  |
|      | D   | 801                      | 15       | 358             | 11       | 377             | 11       | 39              | 10       | 14              | 9        | 221      | 11       | e    | 263              | 58  |
|      | E   | 614                      | 13       | 361             | 10       | 443             | 11       | 20              | 10       | 23              | 9        | 222      | 10       |      |                  |     |
|      | F   | 496                      | 11       | 320             | 9        | 396             | 10       | 23              | 8        | 31              | 8        | 147      | 8        |      |                  |     |
| Ш    | A   | 343                      | 10       | 409             | 10       | 441             | 11       | 33              | 8        | 55              | 9        | 110      | 9        | a    | - 9              | 54  |
|      | В   | 401                      | 10       | 384             | 10       | 445             | 10       | 16              | 8        | 49              | 9        | 173      | 8        | c    | 221              | 51. |
|      | C   | 504                      | 12       | 509             | 12       | 588             | 13       | 87              | 10       | 23              | 11       | 212      | 10       | đ    | 337              | 58  |
|      | D   | 457                      | 12       | 667             | 15       | 684             | 14       | 147             | 11       | 33              | 12       | 152      | 11       | e    | 190              | 51  |
|      | E   | 388                      | 11       | 636             | 14       | 556             | 13       | 48              | 10       | 60              | 11       | 60       | 10       |      |                  |     |
|      | F   | 363                      | 10       | 449             | 11       | 412             | 10       | 4               | 9        | 66              | 9        | 90       | 8        |      |                  |     |

Tab. 2b. Thermische Parameter ( $\times$ 104 Ų) von 2 und ihre Standardabweichungen bezogen auf die Achsen a, b, c

| Ring | Aton                       | n <i>u</i> 11                          | σ                            | u <sup>22</sup>                        | σ                             | u <sup>33</sup>                        | σ                             | $u^{12}$                                | σ                          | <i>µ</i> 23                          | σ                          | <i>u</i> <sup>13</sup>                 | σ                          | Atom             | $\overline{U}^2$         | σ                    |
|------|----------------------------|----------------------------------------|------------------------------|----------------------------------------|-------------------------------|----------------------------------------|-------------------------------|-----------------------------------------|----------------------------|--------------------------------------|----------------------------|----------------------------------------|----------------------------|------------------|--------------------------|----------------------|
| I    | A<br>B<br>C<br>D<br>E<br>F | 380<br>455<br>611<br>594<br>463<br>404 | 7<br>8<br>10<br>10<br>9<br>7 | 436<br>485<br>617<br>747<br>596<br>379 | 8<br>8<br>10<br>12<br>10<br>7 | 376<br>356<br>360<br>409<br>534<br>461 | 7<br>7<br>8<br>8<br>9<br>7    | 37<br>59<br>57<br>16<br>-59<br>26       | 6<br>8<br>9<br>8           | 55431881173110                       | 6<br>8<br>9<br>8<br>6      | 149<br>207<br>158<br>38<br>114<br>170  | 6<br>7<br>7<br>7<br>6      | a<br>c<br>d<br>e | 36<br>329<br>376<br>360  | 30<br>44<br>46<br>47 |
| 11   | A<br>B<br>C<br>D<br>E<br>F | 395<br>342<br>375<br>398<br>413<br>377 | 7<br>7<br>7<br>8<br>7<br>7   | 326<br>350<br>373<br>322<br>393<br>358 | 7<br>7<br>8<br>7<br>8<br>7    | 505<br>541<br>752<br>881<br>692<br>524 | 8<br>8<br>10<br>12<br>10<br>8 | 19<br>14<br>34<br>32<br>35<br>29        | 6<br>6<br>6<br>7<br>6      | -5<br>-60<br>-119<br>11<br>117<br>54 | 6<br>8<br>8<br>8<br>6      | 216<br>192<br>240<br>311<br>280<br>226 | 6<br>6<br>7<br>8<br>7<br>6 | a<br>c<br>d<br>e | 95<br>276<br>229<br>249  | 32<br>41<br>37<br>40 |
| 111  | A<br>B<br>C<br>D<br>E<br>F | 431<br>442<br>580<br>734<br>607<br>413 | 7<br>7<br>9<br>11<br>9<br>7  | 446<br>388<br>617<br>817<br>657<br>502 | 8<br>7<br>10<br>12<br>10<br>8 | 382<br>443<br>484<br>421<br>351<br>327 | 7<br>7<br>8<br>8<br>7<br>6    | 7<br>24<br>27<br>70<br>44<br>5          | 6<br>8<br>10<br>8<br>6     | 30<br>81<br>107<br>6<br>-23<br>29    | 6<br>8<br>8<br>7<br>6      | 199<br>211<br>302<br>346<br>209<br>139 | 6<br>6<br>7<br>8<br>7<br>6 | a<br>c<br>d<br>e | 116<br>246<br>363<br>314 | 32<br>40<br>43<br>44 |
| IV   | A<br>B<br>C<br>D<br>E<br>F | 359<br>393<br>480<br>465<br>479<br>375 | 7<br>7<br>8<br>8<br>8<br>8   | 436<br>422<br>538<br>604<br>493<br>349 | 8<br>7<br>9<br>10<br>9<br>7   | 402<br>382<br>401<br>586<br>596<br>464 | 7<br>7<br>8<br>9<br>9         | -53<br>-14<br>-41<br>-173<br>-127<br>-8 | 6<br>6<br>7<br>8<br>7<br>6 | -47<br>37<br>76<br>129<br>63<br>3    | 6<br>7<br>8<br>7<br>6      | 146<br>158<br>110<br>150<br>250<br>197 | 6<br>6<br>7<br>7<br>6      | a<br>c<br>d<br>e | 149<br>203<br>375<br>344 | 34<br>37<br>43<br>43 |
| v    | A<br>B<br>C<br>D<br>E<br>F | 589<br>395<br>463<br>614<br>555<br>450 | 9<br>7<br>8<br>10<br>9<br>7  | 495<br>379<br>448<br>576<br>548<br>450 | 8<br>7<br>8<br>9<br>9         | 419<br>464<br>614<br>562<br>448<br>405 | 7<br>7<br>9<br>9<br>8<br>7    | 105<br>29<br>7<br>47<br>116<br>76       | 7<br>6<br>7<br>8<br>8<br>6 | 20<br>47<br>86<br>163<br>116<br>38   | 7<br>6<br>7<br>8<br>7<br>6 | 273<br>232<br>310<br>361<br>285<br>235 | 7<br>6<br>7<br>8<br>7<br>6 | a<br>c<br>d<br>e | 305<br>308<br>374<br>327 | 42<br>41<br>43<br>45 |

Tab. 3a. Experimentell bestimmte Bindungslängen (Å) und -winkel (°) von 1 und ihre Standardabweichungen

| Bindungslängen       | I                            | σ                                                  | Ring<br>Il                   | σ                                                                    | III                          | σ                                | Mittelwerte | Streuwerte  |
|----------------------|------------------------------|----------------------------------------------------|------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------|-------------|-------------|
| AB<br>AF             | 1.391<br>1.394               | 2 <sub>0</sub><br>2 <sub>5</sub>                   | 1.396<br>1.394               | 2 <sub>2</sub><br>2 <sub>6</sub>                                     | 1.394<br>1.396               | 2 <sub>5</sub><br>2 <sub>3</sub> | 1.394       | 0.0016      |
| BC<br>EF             | 1.399<br>1.401               | $\frac{2_3}{2_5}$                                  | 1,399<br>1,400               | $\frac{2_{6}}{2_{6}}$                                                | 1.399<br>1.400               | $\frac{2_{6}}{2_{6}}$            | 1.400       | 0.0007      |
| CD<br>DE             | 1.384<br>1.382               | $\frac{3_0}{3_0}$                                  | 1.385<br>1.383               | $\begin{smallmatrix}3_1\\2_7\end{smallmatrix}$                       | 1.387<br>1.382               | $\frac{2_{7}}{3_{2}}$            | 1,384       | 0.0017      |
| BF'                  | 1.487                        | 25                                                 | 1.486                        | 25                                                                   | 1.487                        | 22                               | 1.487       | $0.000_{4}$ |
| Aa<br>Cc<br>Dd<br>Ee | 0.99<br>0.97<br>0.97<br>1.01 | 1 <sub>8</sub><br>1 <sub>9</sub><br>1 <sub>8</sub> | 0.98<br>1.00<br>0.98<br>0.99 | 1 <sub>9</sub><br>1 <sub>6</sub><br>1 <sub>9</sub><br>2 <sub>0</sub> | 0.96<br>1.01<br>1.03<br>1.03 | 18<br>18<br>19<br>16             | 0.99        | 0.022       |
| Bindungswinkel       |                              |                                                    |                              |                                                                      |                              |                                  |             |             |
| α                    | 122.6                        | 16                                                 | 122.6                        | 16                                                                   | 122.5                        | 16                               | 122.6       | 0.18        |
| β<br>ζ               | 118.2<br>117.8               | $1_7$ $1_7$                                        | 117.8<br>118.1               | $\frac{1}{1_{6}}$                                                    | 118.1<br>118.1               | 1 <sub>6</sub><br>1 <sub>7</sub> | 118.0       | 0.16        |
| Υ<br>ε               | 119.8<br>120.1               | $\frac{1}{8}$                                      | 120.3<br>122.0               | $\frac{1}{20}$                                                       | 120.1<br>120.0               | 19<br>17                         | 120.1       | 0.15        |
| δ                    | 121.4                        | 18                                                 | 121,1                        | Lo                                                                   | 121.2                        | l g                              | 121.3       | $0.6_{2}$   |
| r,                   | 119.5<br>120.6               | 1 <sub>3</sub><br>1 <sub>5</sub>                   | 120.2<br>119.7               | 1 <sub>5</sub><br>1 <sub>6</sub>                                     | 120.2<br>120.1               | $\frac{1}{1_5}$                  | 120.1       | 0.36        |
| ⊕<br>×               | 122.2<br>121.6               | $\frac{1}{1_{0}}$                                  | 122.0<br>122.1               | $\frac{1}{1_7}$                                                      | 121.7<br>121.7               | 1 <sub>6</sub><br>1 <sub>5</sub> | 121.9       | 0.23        |
| λ<br>π               | 117.9<br>117.9               | 11<br>9                                            | 117.7<br>118.6               | 11<br>10                                                             | 119.9<br>118.3               | 9<br>10                          | 118.4       | 0.7         |
| μ                    | 122.3<br>122.0               | 11<br>9                                            | 122.0<br>121.3               | 11<br>10                                                             | 120.0<br>121.7               | 9<br>10                          | 121.5       | 0.8         |
| v<br>Ę               | 120.4<br>118.2               | 12<br>12                                           | 119.1<br>120.0               | 10<br>10                                                             | 119. <b>0</b><br>119.6       | 11<br>11                         | 119.3       | 0.7         |
| ī<br>P               | 118.1<br>119.2               | 1 l<br>1 l                                         | 117.9<br>119.3               | 10<br>10                                                             | 119.3<br>118.2               | 10<br>10                         | 118.7       | 0.6         |

Tab. 3b. Experimentell bestimmte Bindungslängen (Å) und -winkel (°) von 2 und ihre Standardabweichungen

| Bindungs<br>längen   | - 1                          | σ                                                                    | 11                           | σ                                                                    | Ring<br>[II                  | σ                                                                    | IV                           | σ                                                                    | v                            | σ                                                                    | Mittel-<br>werte | Streu-<br>werte |
|----------------------|------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------|------------------|-----------------|
| AB<br>AF             | 1.398                        | 2 <sub>0</sub><br>2 <sub>0</sub>                                     | 1.395<br>1.395               | $\frac{1_8}{2_1}$                                                    | 1.396<br>1.398               | 2 <sub>1</sub><br>1 <sub>8</sub>                                     | 1.393<br>1.393               | 1 <sub>8</sub> 2 <sub>2</sub>                                        | 1.387<br>1.390               | 1 <sub>8</sub><br>1 <sub>8</sub>                                     | 1.393            | 0.0037          |
| BC<br>EF             | 1.395<br>1.398               | 1 <sub>7</sub><br>1 <sub>7</sub>                                     | 1.402<br>1.399               | 2 <sub>0</sub><br>2 <sub>0</sub>                                     | 1.401<br>1.395               | 2 <sub>4</sub><br>2 <sub>3</sub>                                     | 1,393<br>1,394               | 1 <sub>7</sub><br>1 <sub>7</sub>                                     | 1.400<br>1.394               | 2 <sub>3</sub><br>2 <sub>3</sub>                                     | 1.397            | 0.0031          |
| CD<br>DE             | 1.390<br>1.392               | 2 <sub>1</sub><br>2 <sub>5</sub>                                     | 1,393<br>1.389               | $\frac{2_{6}}{2_{1}}$                                                | 1.391<br>1.394               | $\frac{2_1}{2_6}$                                                    | 1.392<br>1.390               | $\frac{2_5}{2_3}$                                                    | 1.391<br>1.383               | $\frac{2_{1}}{2_{1}}$                                                | 1.391            | 0.0029          |
| BF'                  | 1.494                        | $2_{t}$                                                              | 1.496                        | 17                                                                   | 1.495                        | 21                                                                   | 1.497                        | 18                                                                   | 1.492                        | 18                                                                   | 1.495            | 0.0017          |
| Aa<br>Cc<br>Dd<br>Ee | 0,99<br>0,98<br>0,99<br>0,97 | 1 <sub>0</sub><br>1 <sub>7</sub><br>1 <sub>3</sub><br>1 <sub>7</sub> | 1.00<br>1.00<br>0.97<br>0.98 | 1 <sub>3</sub><br>1 <sub>4</sub><br>1 <sub>5</sub><br>1 <sub>6</sub> | 0.98<br>0.99<br>0.98<br>1.02 | 1 <sub>5</sub><br>1 <sub>6</sub><br>1 <sub>8</sub><br>1 <sub>4</sub> | 0.97<br>0.97<br>1.00<br>0.98 | 1 <sub>2</sub><br>1 <sub>4</sub><br>1 <sub>4</sub><br>1 <sub>8</sub> | 0.99<br>0.98<br>0.97<br>1.01 | 1 <sub>7</sub><br>1 <sub>4</sub><br>1 <sub>8</sub><br>1 <sub>5</sub> | 0.99             | 0.015           |
| Bindungs<br>winkel   | -                            |                                                                      | ,                            |                                                                      |                              |                                                                      |                              |                                                                      |                              |                                                                      |                  |                 |
| α                    | 124.1                        | 11                                                                   | 124.4                        | 12                                                                   | 123.7                        | 14                                                                   | 124.5                        | $1_{t}$                                                              | 124.4                        | 15                                                                   | 124.2            | $0.2_{9}$       |
| βζ                   | 116.5<br>117.3               | 1 <sub>3</sub><br>3 <sub>4</sub>                                     | 117.1<br>117.1               | 1 <sub>4</sub><br>1 <sub>2</sub>                                     | 117.0<br>117.4               | 1 <sub>2</sub><br>1 <sub>4</sub>                                     | 117.1<br>116.6               | 1 <sub>4</sub><br>1 <sub>3</sub>                                     | 116.3<br>116.7               | 1 <sub>2</sub><br>1 <sub>2</sub>                                     | 116,9            | 0.34            |
| Υ<br>ε               | 120.1<br>119.3               | 1 <sub>5</sub><br>1 <sub>4</sub>                                     | 119.3<br>119.5               | 1 <sub>3</sub><br>1 <sub>6</sub>                                     | 120.0<br>119.7               | 16                                                                   | 119.4<br>119.9               | $\frac{1}{1}$                                                        | 119.7<br>119.7               | 13<br>13                                                             | 119.7            | 0.27            |
| δ                    | 121.7                        | $1_1$                                                                | 122.3                        | 14                                                                   | 121.6                        | 17                                                                   | 122.0                        | 13                                                                   | 122.2                        | 16                                                                   | 122.0            | $0.2_{8}$       |
| n<br>t               | 118.3<br>116.7               | 1 <sub>0</sub><br>1 <sub>0</sub>                                     | 115.6<br>116.5               | 1 <sub>2</sub><br>1 <sub>2</sub>                                     | 117.3<br>116.4               | 1 <sub>4</sub><br>1 <sub>3</sub>                                     | 115.2<br>117.9               | 1 <sub>0</sub><br>1 <sub>0</sub>                                     | 117.1<br>116.1               | $\frac{1}{4}$                                                        | 116.7            | 0.92            |
| Θ<br>×               | 124.5<br>125.4               | 1 <sub>3</sub><br>1 <sub>4</sub>                                     | 127.2<br>126.3               | 1 <sub>2</sub><br>1 <sub>4</sub>                                     | 125.4<br>125.9               | 1 <sub>3</sub><br>1 <sub>2</sub>                                     | 127.6<br>125.3               | 1 <sub>2</sub><br>1 <sub>4</sub>                                     | 126.7<br>127.0               | $\frac{1}{1}$                                                        | 126.1            | $0.9_{4}$       |
| λ<br>π               | 119.0<br>119.2               | 8                                                                    | 118.9<br>119.5               | 10                                                                   | 119.8<br>119.2               | 8<br>11                                                              | 119.4<br>118.6               | 9<br>7                                                               | 118.1<br>120.1               | 9<br>10                                                              | 119.2            | 0.5             |
| μ<br>0               | 120.8<br>121.3               | 8<br>8                                                               | 121.8<br>120.9               | 9<br>8                                                               | 120.2<br>121.0               | 9<br>11                                                              | 121.2<br>121.5               | 9<br>7                                                               | 122.2<br>120.2               | 9<br>10                                                              | 121.1            | 0.6             |
| ν<br>ξ               | 116.6<br>121.5               | 10<br>11                                                             | 119.4<br>118.2               | 8                                                                    | 118.2<br>120.1               | 8                                                                    | 119.2<br>118.6               | 10<br>10                                                             | 118.6<br>119.2               | 8                                                                    | 119.0            | 1.2             |
| τ<br>P               | 118.7<br>116.8               | 8                                                                    | 117.6<br>118.0               | 7<br>7                                                               | 119.2<br>117.1               | 7<br>7                                                               | 117.0<br>118.5               | 9<br>9                                                               | 118.7<br>115.9               | 8<br>7                                                               | 117.8            | 1.0             |

Tab. 4a. Atomkoordinaten (Å) von 1 in einem *LMN*-Achsensystem, das auf alle Atome B und F bezogen ist. Der Ursprung und die kovarianten Komponenten des *LMN*-Systems werden angegeben

| Ursprung |      |   | $x_1$    | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> |
|----------|------|---|----------|-----------------------|-----------------------|
| x = 0    |      | L | 12.33274 | -2.20022              | -1.10435              |
| y = 0    |      | M | 1.15823  | 8.88304               | 4.83206               |
| z = 0    |      | N | 1.32611  | 12.69884              | -3.57135              |
| Ring     | Atom |   | ı        | m                     | n                     |
| 1        | Α    |   | 1.7605   | 2.3600                | 0.0760                |
|          | В    |   | 3.1194   | 2.1544                | 0.1412                |
|          | C    |   | 3.8995   | 3.2467                | 0.5367                |
|          | D    |   | 3.3089   | 4.4855                | 0.7138                |
|          | E    |   | 1.9554   | 4.6740                | 0.5050                |
|          | F    |   | 1.1509   | 3.6009                | 0.0988                |
| t.i      | Α    | - | -1.1765  | 2.6893                | 0.0515                |
|          | В    | - | -0.3084  | 3.7667                | -0.1354               |
|          | C    | - | -0.8644  | 4.9952                | 0.5080                |
|          | D    | - | -2.2360  | 5.1263                | -0.6516               |
|          | E    | - | -3.0828  | 4.0525                | 0.4481                |
|          | F    | - | -2.5577  | 2.8023                | -0.1015               |

| Tab. | 4 a | (Fortsetzung)      |
|------|-----|--------------------|
| ıuv. | тu  | ( L UT ISCIL ANY ) |

| Ring | Atom                 | I       | m       | n       |
|------|----------------------|---------|---------|---------|
| III  | A                    | 2.9668  | 0.3395  | -0.1776 |
|      | $\mathbf{B}^{\circ}$ | -3.4240 | 1.6189  | 0.1360  |
|      | С                    | -4.6866 | 1.7401  | 0.7261  |
|      | D                    | 5.4494  | 0.6087  | 0,9744  |
|      | E                    | 4.9747  | -0.6552 | 0.6767  |
|      | F                    | -3.7062 | -0.8104 | 0.1051  |
| Ī    | a                    | 1.277   | 1.608   | 0.404   |
|      | c                    | 4.853   | 3.099   | 0.679   |
|      | d                    | 3.837   | 5.244   | 1.003   |
|      | e                    | 1.510   | 5.570   | 0.657   |
| H    | a                    | 0.800   | 1.853   | 0.390   |
|      | c                    | 0.239   | 5.756   | -0.675  |
|      | d                    | 2.609   | 6.002   | -0.876  |
|      | e                    | 4.061   | 4.132   | -0.596  |
| Ш    | a                    | 2.107   | 0.236   | -0.584  |
|      | c                    | -5.030  | 2.654   | 1.001   |
|      | d                    | 6.349   | 0.712   | 1.455   |
|      | e                    | 5.526   | 1.499   | 0.875   |

Tab. 4b. Schwerpunkte, kovariante Komponenten der *LMN*-Achsensysteme, die auf die Atome B, C, E, F der Benzolringe bezogen sind, und die Atomkoordinaten (Å) entlang N von 1

| Ring               | Schwerpunkt                                                                                     |                  | $x_1$                            | <i>x</i> <sub>2</sub>                          | <i>x</i> <sub>3</sub>             |
|--------------------|-------------------------------------------------------------------------------------------------|------------------|----------------------------------|------------------------------------------------|-----------------------------------|
| I                  | x = 0.26456<br>y = 0.11784<br>z = 0.42753                                                       | L<br>M<br>N      | -9.28424<br>-8.21626<br>-1.22236 | 6.82432<br>-9.28714<br>10.59177                | 3.80156<br>2.10430<br>4.29446     |
| II                 | $   \begin{aligned}     x &= -0.06246 \\     y &= 0.14138 \\     z &= 0.56304   \end{aligned} $ | L<br>M<br>N      | -11.77472<br>-4.03400<br>0.53000 | -1.21257<br>5.46007<br>14.61934                | -0.94311<br>5.62841<br>2.18034    |
| 111                | $   \begin{aligned}     x &= -0.32362 \\     y &= 0.07615 \\     z &= 0.03553   \end{aligned} $ | L<br>M<br>N      | -2.62706<br>-10.48389<br>6.19555 | 8.76634<br>8.15498<br>10.08243                 | -4.60935<br>0.00226<br>-4.00951   |
| Atom               | Ebene I<br>n                                                                                    | Atom             | Ebene II                         | Atom                                           | Ebene III<br>n                    |
| B<br>C<br>E<br>F   | 0.003<br>-0.003<br>0.003<br>0.003                                                               | B<br>C<br>E<br>F | 0.007<br>0.007<br>0.007<br>0.007 | <b>B</b><br>C<br>E<br>F                        | -0.005<br>0.005<br>0.005<br>0.005 |
| A<br>D             | -0.005 $-0.001$                                                                                 | A<br>D           | -0.002 $0.001$                   | A<br>D                                         | 0.022<br>0.010                    |
| <b>В</b> п<br>Fтт' | $0.001 \\ -0.041$                                                                               | Bui<br>Fi        | 0.007<br>0.071                   | $\begin{matrix} B_{1'} \\ F_{11} \end{matrix}$ | 0.108<br>0.059                    |
| a<br>c<br>d<br>e   | -0.055<br>-0.006<br>0.012<br>0.030                                                              | a<br>c<br>d<br>e | 0.090<br>0.036<br>0.029<br>0.035 | a<br>c<br>d<br>e                               | -0.031<br>0.056<br>0.051<br>0.003 |

Tab. 5a. Atomkoordinaten (Å) von 2 in einem LMN-Achsensystem, das auf alle Atome B und F bezogen ist. Der Ursprung und die kovarianten Komponenten des LMN-Systems werden angegeben

|      |              | Ursprung  |         | $x_1$      |      | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub> |         |
|------|--------------|-----------|---------|------------|------|-----------------------|-----------------------|---------|
|      |              | x = 0.25  |         | L 1.82394  |      | 72021                 | 19.4961               |         |
|      |              | y = -0.13 |         | M 10.88699 |      | 76919                 | -13.0427              |         |
|      |              | z = 0.27  | 283     | N 12.15320 | 3.   | 63465                 | -4.2984               | 15      |
| Ring | Ato          | m l       | m       | п          | Atom | 1                     | m                     | n       |
| I    | Α            | 2.4641    | 0.0369  | 0.3137     | a    | -1.636                | 0.021                 | 0.850   |
|      | В            | -2.9488   | 1.2693  | - 0.1354   | С    | 4.525                 | 2.091                 | - 1.175 |
|      | C            | -4.1620   | 1.2487  | 0.8235     | d    | -5.658                | 0.085                 | -1.573  |
|      | D            | -4.8020   | 0.0402  | 1.0718     | e    | -4.617                | -2.024                | -1.012  |
|      | Ε            | -4.2237   | 1.1785  | -0.7283    |      |                       |                       |         |
|      | F            | 3.0018    | 1.1899  | 0.0485     |      |                       |                       |         |
| Ħ    | Α            | -0.7681   | 2.1852  | -0.0538    | a    | -0.477                | -1.284                | -0.366  |
|      | В            | 2.1326    | 2.3884  | 0.1513     | c    | -3.513                | -3.865                | 0.622   |
|      | C            | 2.5440    | 3.6890  | 0.4753     | d    | 1.874                 | - 5.601               | 0.802   |
|      | D            | -1.5926   | -4.7017 | 0.5696     | e    | 0.418                 | 5.183                 | 0.504   |
|      | $\mathbf{E}$ | -0.2352   | -4.4648 | 0.3943     |      |                       |                       |         |
|      | F            | 0.2063    | -3.1720 | 0.0949     |      |                       |                       |         |
| Ш    | Α            | 1.9511    | 1.4322  | 0.2596     | a    | 1.313                 | -0.908                | 0.788   |
|      | В            | 1.6263    | 2.7423  | 0.0956     | c    | 2.440                 | -4.431                | 0.995   |
|      | C            | 2.6261    | -3.4975 | 0.7216     | d    | 4.541                 | -3.472                | -1.448  |
|      | D            | 3.8591    | -2.9187 | 1.0056     | e    | 4.977                 | 1.129                 | 1.056   |
|      | E            | 4.1093    | -1.5711 | 0.7490     |      |                       |                       |         |
|      | F            | 3.1314    | 0.7922  | -0.1312    |      |                       |                       |         |
| IV   | Α            | 1.9543    | 1.3438  | -0.1883    | a    | 1.236                 | 0.818                 | 0.561   |
|      | В            | 3,1668    | 0.6935  | 0.0309     | c    | 5,116                 | 1.073                 | 0.531   |
|      | C            | 4.2504    | 1.4826  | 0.4102     | d    | 4.834                 | 3.403                 | 0.916   |
|      | D            | 4.0646    | 2.8470  | 0.6117     | e    | 2.679                 | 4.396                 | 0.707   |
|      | E            | 2.8155    | 3.4459  | 0.4931     |      |                       |                       |         |
|      | F            | 1.7153    | 2.6862  | 0.0993     |      |                       |                       |         |
| V    | Α            | - 0.6981  | 2.2092  | 0.0534     | a    | -0.438                | 1.259                 | 0.073   |
|      | В            | 0.2997    | 3.1722  | 0.0537     | c    | 0.560                 | 5.209                 | -0.006  |
|      | C            | -0.1256   | 4.5053  | 0.0163     | d    | -1.761                | 5.723                 | -0.092  |
|      | D            | -1.4853   | 4.7933  | -0.0427    | e    | 3.423                 | 4.045                 | -0.116  |
|      | Е            | -2.4487   | 3.8018  | 0.0690     |      |                       |                       |         |
|      | F            | -2.0626   | 2.4637  | -0.0194    |      |                       |                       |         |
|      |              |           |         |            |      |                       |                       |         |

Tab. 5b. Schwerpunkte, kovariante Komponenten der *LMN*-Achsensysteme, die auf die Atome B, C, E, F der Benzolringe bezogen sind, und die Atomkoordinaten (Å) entlang N von 2

| Ring | Schwerpunkt    | <i>X</i> 1   | <i>x</i> <sub>2</sub> | <i>X</i> <sub>3</sub> |
|------|----------------|--------------|-----------------------|-----------------------|
| King | Selfwei pulikt | -41          | 2.2                   | A 3                   |
| I    | x = 0.12360    | L -10.48675  | -3.94038              | 12.37336              |
|      | y = -0.27736   | M = -7.49303 | 0.30012               | 14.95084              |
|      | z = 0.11458    | N 10.17035   | -3.84185              | 13.85866              |
| II   | x = 0.12439    | L = -2.07183 | 0.53432               | 22.74278              |
|      | y = -0.65637   | M = 7.93347  | 4.82348               | 5.19718               |
|      | z = 0.27145    | N 14.22396   | - 2.61249             | -4.94419              |
| Ш    | x = 0.26187    | L 9.56378    | 4.08296               | 1.66215               |
|      | y = -0.18435   | M 10.13685   | -0.74758              | -22.85972             |
|      | z = 0.42465    | N 8.67938    | -3.62589              | 6.58486               |
| IV   | x = 0.43475    | L = -8.06835 | 1.91273               | 22.16383              |
|      | v = 0.26501    | M -10.90414  | 2.44692               | -6.69422              |
|      | z = 0.37467    | N 9.24959    | - 4.55308             | -5.71331              |
| V    | x = 0.33602    | L 5.26339    | 2.61061               | 14.78461              |
|      | y = 0.24071    | M 9.52887    | 3.23061               | -17.93344             |
|      | z = 0.17722    | N 12.29027   | 3.62276               | 5.33824               |

| Atom                         | Ebene I                                                  | Atom                                                   | Ebene II                                               | Atom                          | Ebene III<br>n                                      | Atom                                                   | Ebene IV                                           | Atom                                             | Ebene V                                            |
|------------------------------|----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
| B<br>C<br>E<br>F<br>A        | 0.003<br>0.003<br>0.003<br>0.003<br>0.103<br>0.041       | B<br>C<br>E<br>F<br>A<br>D                             | -0.006<br>0.006<br>-0.006<br>0.006<br>-0.033<br>-0.015 | B<br>C<br>E<br>F<br>A<br>D    | 0.001<br>0.001<br>0.001<br>-0.001<br>0.092<br>0.036 | B<br>C<br>E<br>F<br>A<br>D                             | 0.004<br>0.004<br>0.004<br>0.004<br>0.078<br>0.028 | B<br>C<br>E<br>F<br>A                            | 0.003<br>0.003<br>0.003<br>0.003<br>0.017<br>0.005 |
| Bu<br>Fv<br>a<br>c<br>d<br>e | -0.307<br>-0.277<br>-0.164<br>-0.095<br>-0.025<br>-0.089 | B <sub>III</sub><br>F <sub>I</sub><br>a<br>c<br>d<br>e | 0.045<br>-0.042<br>-0.126<br>0.020<br>0.003<br>0.018   | Brv<br>Fm<br>a<br>c<br>d<br>e | -0.234<br>0.226<br>0.199<br>0.068<br>0.030<br>0.078 | B <sub>V</sub><br>F <sub>III</sub><br>a<br>c<br>d<br>e | 0.154<br>0.135<br>0.188<br>0.010<br>0.000<br>0.060 | B <sub>1</sub><br>F <sub>1V</sub><br>a<br>c<br>d | -0.102<br>-0.024<br>-0.006<br>-0.032<br>-0.014     |

Tab. 5b (Fortsetzung)

Die auf  $a^*$ ,  $b^*$ ,  $c^*$  bezogene Orientierung der mittleren Ebene, die nur durch alle Atome B und F gelegt wird, und die Atomkoordinaten in diesem System befinden sich für 1 in Tab. 4. In der gleichen Tabelle finden sich die Orientierungen der LMN-Systeme der einzelnen Benzolringe und die entsprechenden N-Koordinaten der Ringatome und der an sie gebundenen Atome. Die entsprechende Information für 2 steht in Tab. 5.

Die Senkrechten auf die mittleren Ebenen der drei Ringe von 1,  $\mathbf{n}_{I}$ ,  $\mathbf{n}_{II}$  und  $\mathbf{n}_{III}$  bilden mit der N-Achse Winkel von 16° 43′, 14° 53′ und 24° 42′. Die Diederwinkel zwischen den Ebenen, die definiert sind durch  $\mathbf{N}\mathbf{n}_{II}$  und  $\mathbf{N}\mathbf{n}_{III}$  sowie  $\mathbf{N}\mathbf{n}_{II}$  und  $\mathbf{N}\mathbf{n}_{III}$  betragen 58° 10′ und 62° 14′; die Diederwinkel zwischen den Flächen, definiert durch  $\mathbf{N}$  und den Vektor  $\mathbf{p}$ , der (000) und das Zentrum der Benzolringe verbindet, und durch  $\mathbf{n}$  und  $\mathbf{p}$  sind 0° 48′ (1), 1° 13′ (11) und 1° 5′ (III). Diese Winkel sind ein Maß für die unterschiedlichen Abweichungen von B und F, und von C und E von der mittleren Ebene durch alle Atome B und F.

In 2 bilden die Senkrechten n zu den mittleren Ebenen der Benzolringe I bis V Winkel von  $+30^{\circ}$  16',  $-13^{\circ}$  7',  $+27^{\circ}$  12',  $-16^{\circ}$  53' und  $+2^{\circ}$  41' mit der N-Achse.

#### Diskussion

#### Molekül-Konformation und Auswirkungen des "Overcrowding Effect"

Bedingt durch die Raumgruppe  $R \ \overline{3}$  bzw.  $R \ \overline{3}$  m ist die Molekularsymmetrie für 3:  $\overline{3}$  bzw.  $\overline{3}$  m (Tab. 11, S. 1154). Obwohl die Kristallstrukturanalyse dieser Verbindung auf den ersten Blick vielleicht erstrebenswerter erscheint als die von 1, wurde sie aus folgenden Gründen nicht durchgeführt:

- 1. Die sehr starke thermische Streuung, wie sie an Hand von Weißenberg- und Präcessionsaufnahmen festgestellt werden konnte, würde eine Vermessung der Bragg-Reflexe mit dem Diffraktometer bei Raumtemperatur stören.
- 2. Im Hinblick auf die Möglichkeit, daß das Skelett von 1 Symmetrie  $\bar{3}$  oder sogar  $\bar{3}$  m besitzen könnte, wurde ein interessanter Aspekt darin gesehen, Informationen über die Molekularsymmetrie aus der niedrigeren Raumgruppe zu gewinnen.

Die abwechselnde Abweichung aller Atome B und F von ihrer mittleren Ebene (Tab. 4) stimmt in etwa mit Symmetrie  $\overline{3}$  m überein. Die geringe abwechselnde Ver-

drehung der Benzolringe in der Größenordnung von 1° um die Achsen, die sich aus der Projektion der Diagonalen durch AD der Benzolringe auf die mittlere Ebene des Moleküls ergeben, verringern die Symmetrie jedoch auf  $\bar{3}$ . Wie aus dem beobachteten Unterschied zwischen den drei Winkeln hervorgeht, die die Senkrechten n auf die Benzolringe mit der N-Achse bilden, trifft aber auch die Symmetrie  $\bar{3}$  nicht zu. Um ein quantitatives Maß für die Abweichung von der Symmetrie  $\bar{3}$  m zu erhalten, haben wir die Koordinaten des symmetrisierten Modells ( $\bar{3}$  m) wie folgt berechnet: wir legten die Orientierung der  $\bar{3}$ -Achse so fest, daß sie entlang der N-Achse des LMN-Systems durch alle Atome B und F verlief. Anschließend wurde die Symmetrieoperation  $\bar{3}$  auf die Kohlenstoff- und Wasserstoffatome der Ringe I und III angewandt, so daß diese Ringe sich optimal mit Ring II deckten. Die daraus folgenden l- und m-Koordinaten der Kohlenstoffatome wurden gemittelt. Daraus ergab sich das Zentrum eines gemittelten Benzolrings. Die Lage der Spiegelebene wurde dann definiert durch die N-

Tab. 6. Unterschiede in den LMN-Atomkoordinaten (Å) des beobachteten (Tab. 4a) und symmetrisierten ( $\overline{3}$  m) 1. Die  $\overline{3}$ -Achse verläuft parallel zu N, und der Vektor senkrecht auf die Spiegelebene m hat die Richtung 0.9168 L+0.3995 M

| Ring | Atom | $\Delta I$ | $\Delta m$ | $\Delta n$ | Atom | $\Delta l$ | $\Delta m$ | $\Delta n$ |
|------|------|------------|------------|------------|------|------------|------------|------------|
|      | A    | .004       | 016        | .026       | a    | .007       | 044        | .056       |
|      | В    | .006       | 003        | .022       | c ·  | 007        | .025       | 072        |
|      | C    | .014       | .016       | 030        | d    | 013        | .034       | 108        |
|      | Ď    | .011       | .022       | 066        | e    | 001        | .022       | 093        |
|      | Ë    | .009       | .011       | 062        |      |            |            |            |
|      | F    | .004       | 009        | .021       |      |            |            |            |
| II   | _    | .004       | 020        | 050        |      | .020       | 030        | 069        |
| 11   | A    |            |            |            | a    |            |            |            |
|      | В    | .003       | 008        | 016        | c    | 007        | .012       | .075       |
|      | С    | 009        | .015       | .059       | d    | 022        | .063       | .236       |
|      | D    | 019        | .038       | .128       | e    | 012        | .051       | .154       |
|      | E    | 018        | .036       | .119       |      |            |            |            |
|      | F    | 004        | .004       | .018       |      |            |            |            |
| Ш    | Α    | 031        | .007       | 076        | a    | 066        | .005       | 125        |
|      | В    | .001       | .001       | .016       | С    | .061       | 017        | .251       |
|      | Ċ    | .054       | 009        | .159       | d    | .088       | 017        | .344       |
|      | Ď    | .065       | 015        | .195       | e    | .034       | 033        | .125       |
|      | Ē    | .037       | 009        | .110       | -    | .501       | .000       |            |
|      | F    |            | .002       | 015        |      |            |            |            |
|      | Г    | 007        | ,002       | 013        |      |            |            |            |

Die Koordinaten (Å) des symmetrisierten  $(\overline{3} m)$  Moleküls 1 werden angegeben in einem L'M'N'-Achsensystem, in dem N' entlang der  $\overline{3}$ -Achse verläuft, und L' senkrecht auf der Spiegelebene m steht. L'M'N' und LMN (siehe Tab. 4a) stehen durch folgende Gleichungen miteinander in Beziehung:

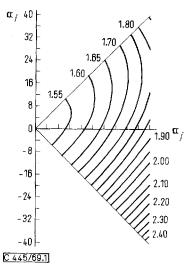
$$\mathbf{L}' = 0.916766 \, \mathbf{L} + 0.39942 \, \mathbf{M}$$
  
 $\mathbf{M}' = -0.399424 \, \mathbf{L} + 0.91677 \, \mathbf{M}$   
 $\mathbf{N}' = \mathbf{N}$ 

|   | Atom | ľ     | m'    | n'     |
|---|------|-------|-------|--------|
| - | A    | 0     | 2.955 | 0.102  |
|   | В    | 1.223 | 3.585 | -0.120 |
|   | C    | 1.205 | 4.907 | -0.567 |
|   | D    | 0     | 5.550 | 0.780  |
|   | a    | 0     | 2.054 | 0.459  |
|   | e    | 2.082 | 5.359 | 0.750  |
|   | d    | 0     | 6.478 | -1.112 |

Achse und den Vektor, der (000) und dieses Zentrum verband. Die Koordinaten aller Kohlenstoff- und Wasserstoffatome des symmetrisierten Moleküls folgten aus der Anwendung der Symmetrieoperation m und anschließend  $\overline{3}$ . Die LMN-Koordinaten der Atome  $\overline{A}, \overline{B} = \overline{F}, \overline{C} = \overline{E}, \overline{D}$  und der Wasserstoffatome stehen in Tab.6, welche außerdem die Unterschiede  $\Delta l, \Delta m$  und  $\Delta n$  zwischen den Koordinaten des beobachteten und symmetrisierten Moleküls enthält, die ein Maß für die Abweichung der gemessenen Struktur der Verbindung 1 von der Symmetrie  $\overline{3}$  m angeben. Eine mögliche Erklärung für den Verlust der Symmetrie  $\overline{3}$  m von 1 wird bei der Diskussion der molekularen Packungsanordnung von 1 und seines Hexamethylderivates 3 gegeben.

Wir betrachten drei grundsätzliche Möglichkeiten für die Poly-*m*-phenylene, dem "overcrowding effect" auszuweichen:

- 1. Verdrehung um die Achse parallel zur Verbindungslinie der substituierten Atome B und F eines Ringes;
- 2. abwechselnde vertikale Abweichung der Ringe von der mittleren Ebene durch alle Atome B und F;
  - 3. Abweichung der inneren Atome (A, a) von der Ebene ihrer Benzolringe.


Die Anwendung dieser Möglichkeiten auf 1 wird im folgenden beschrieben: Eine Drehung um die Achse, die durch die Mittelpunkte benachbarter exocyclischer Bindungen verläuft (Möglichkeit 1), hat den Vorteil, daß der geringste Verlust an Koplanarität der exocyclischen und der benachbarten endocyclischen C-C-Bindungen auftritt. Eine Drehung von 18° 46' um diese Hilfsachse bedingt einen Abstand von 2.21 Å für die Wasserstoffatome a und 2.96 Å für die Kohlenstoffatome A (beide in der mittleren Ebene ihrer Benzolringe). Die beobachteten und gemittelten Werte im realen Molekül betragen 2.26 und 2.96 Å. Der beobachtete H...H-Abstand kommt dadurch zustande, daß die A-a-Bindung aus der Ebene des Benzolrings herausgebogen wird und daher der Wasserstoff a um 0.05 Å über dieser Ebene liegt (Möglichkeit 3). Der gemessene C...C-Abstand stimmt gut mit dem entsprechenden Wert von 2.94 Å beim [18] Annulen überein 10). Von der Möglichkeit 2 macht das Molekül kaum Gebrauch. Wie man im symmetrisierten 1 sieht, ist die Gerade, in der sich die Benzolringebene und die mittlere Molekelebene schneiden, von der zu ihr parallelen Verbindungslinie der Mittelpunkte benachbarter BF'-Bindungen 0.03 Å entfernt. Der senkrechte Abstand dieser Verbindungslinie von der Benzolringebene beträgt nur 0.015 Å.

Wir haben keinen direkten Hinweis auf die Molekularsymmetrie von 2, da die Raumgruppen beider Kristallmodifikationen keine Symmetriebedingungen an das Molekül stellen. Betrachtungen über die Möglichkeiten des Moleküls, dem "overcrowding effect" auszuweichen, lassen schließen, daß der freien Molekel Symmetrie 2 zukommt.

Die Molekularsymmetrie von 2 kann durch folgende Überlegungen eine Erklärung finden. Wir stellen uns die Frage, wie eine hypothetische Struktur die beiden Bedingungen a und b gleichzeitig erfüllen kann: a) maximaler Abstand der inneren

<sup>10)</sup> J. Bregman, F. L. Hirshfeld, D. Rabinovich und G. M. J. Schmidt, Acta crystallogr. [Copenhagen] 19, 227 (1965).

Wasserstoffatome und b) minimale Verdrehung der Benzolringe um die Hilfsachse durch die Mittelpunkte benachbarter exocyclischer Bindungen, wie bei 1 definiert. Um beide Bedingungen zu erfüllen, müssen die Verdrehungswinkel um die Hilfsachsen abwechselndes Vorzeichen haben, was wiederum erfordert, daß einer der Benzolringe, etwa Nr. V, einen Verdrehungswinkel von Null hat. Für vier gleiche Verdrehungswinkel hat die sich daraus ergebende Konformation die Symmetrie 2. Dies schließt die Eigenschaft mit ein, daß  $r_{12} = r_{23} = r_{34} > r_{15} = r_{45}$  ist, wenn  $r_{12}$  der Abstand zwischen Wasserstoff  $a_1$  und  $a_{11}$  ist. In einem derartigen Modell sind bei einem Winkel von  $32^{\circ}$   $r_{12}$  usw. 2.16 und  $r_{15}$  usw. 1.76 Å. Die Änderung der beiden  $r_{ij}$  in Abhängigkeit vom Winkel kann aus einem Nomogramm in Abbild. 1 ent-



Abbild. 1. Das Nomogramm zeigt die Beziehung zwischen den Verdrillungswinkeln (°)  $a_i$ ,  $a_j$  benachbarter Benzolringe von 2 und den Wasserstoffabständen (Å)  $a_1...a_j$ 

nommen werden. Diese Abstände wurden unter der Annahme berechnet, daß die Protonen in der Ebene ihrer nicht verbogenen Benzolkerne liegen. Ein weniger variierender Unterschied zwischen den  $r_{ij}$ -Werten kann ohne Verlust der Symmetrie 2 dadurch erreicht werden, daß man die Neigung von I und II vergrößert und entsprechend die von II und III verkleinert. Man erhält dann für Winkel von  $40^{\circ}$  bzw.  $24^{\circ}$  Abstände von  $r_{15} = r_{45} = 1.87$ ,  $r_{12} = r_{34} = 2.16$  und  $r_{23} = 1.92$  Å.

Die beobachteten Werte  $r_{ij}$  (Tab. 8) liegen tatsächlich nahe einer Konformation der Symmetrie 2. Wir haben daher das Molekül symmetrisiert, indem wir Ring V in die mittlere Molekelebene durch alle Atome B und F, von der er nur um 2° 41′ abwich, zurückdrehten und dann die Symmetrieoperation 2 ausführten. Die Unterschiede  $\Delta l$ ,  $\Delta m$  und  $\Delta n$  zwischen den LMN-Koordinaten des beobachteten und symmetrisierten Moleküls finden sich in Tab. 7.

In 2 beträgt der mittlere Verdrehungswinkel 18° 2′ und ist damit sehr nahe dem entsprechenden Wert in 1 (18° 46′). Dennoch beträgt die mittlere Abweichung der Kohlenstoffatome in *meta*-Stellung (z. B. F<sub>1</sub> und B<sub>III</sub> für Ring II) von der Ebene

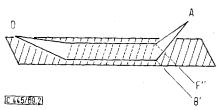
Tab. 7. Unterschiede in den LMN-Atomkoordinaten (Å) des beobachteten (Tab. 5a) und symmetrisierten 2. Die zweizählige Achse des symmetrisierten Moleküls verläuft parallel zu  $-0.2861~\mathrm{L} + 0.9582~\mathrm{M}$ 

| Ring | Atom   | $\Delta l$         | $\Delta m$       | $\Delta n$        | Atom   | $\Delta l$        | $\Delta m$        | $\Delta n$     |
|------|--------|--------------------|------------------|-------------------|--------|-------------------|-------------------|----------------|
| I    | A<br>B | 0.047<br>0.021     | -0.008 $-0.018$  | $0.063 \\ -0.018$ | a<br>c | $-0.077 \\ 0.063$ | $0.007 \\ -0.058$ | 0.144 $-0.234$ |
|      | C      | 0.041              | -0.045           | -0.165            | đ      | 0.125             | -0.055            | -0.329         |
|      | D      | 0.079              | - 0.056          | -0.230            | e      | 0.125             | -0.058            | -0.241         |
|      | Е      | 0.072              | -0.044           | -0.159            |        |                   |                   |                |
|      | F      | 0.013              | 0.017            | 0.009             |        |                   |                   |                |
| П    | A      | 0.039              | 0.041            | 0.103             | a      | 0.062             | 0.098             | 0.211          |
|      | В      | 0.026              | -0.005           | 0.010             | c      | 0.015             | -0.096            | -0.217         |
|      | C<br>D | 0.016<br>0.017     | -0.061 $-0.073$  | $0.137 \\ -0.218$ | d      | 0.010<br>0.014    | -0.104            | -0.323         |
|      | E      | 0.017              | -0.073<br>-0.048 | -0.218<br>0.164   | e      | 0.014             | -0.070            | -0.246         |
|      | F      | 0.022              | 0.007            | -0.000            |        |                   |                   |                |
| Ш    | A      | 0.055              | -0.013           | 0.103             | a      | 0.105             | -0.048            | 0.211          |
| 111  | B      | 0.030              | 0.013            | -0.000            | c      | -0.026            | 0.066             | -0.246         |
|      | č      | -0.009             | 0.054            | -0.164            | ď      | -0.049            | 0.092             | -0.323         |
|      | Ď      | -0.025             | 0.070            | -0.218            | č      | 0.040             | 0.089             | -0.217         |
|      | E      | -0.020             | 0.060            | -0.137            |        |                   |                   |                |
|      | F      | 0.019              | 0.018            | 0.010             |        |                   |                   |                |
| IV   | Α      | -0.043             | -0.019           | 0.063             | a      | -0.061            | 0.049             | 0.049          |
|      | В      | 0.002              | 0.021            | -0.009            | c      | 0.073             | 0.117             | -0.241         |
|      | C      | 0.036              | 0.076            | -0.159            | d      | 0.075             | 0.115             | -0.329         |
|      | D      | 0.035              | 0.090            | -0.230            | e      | 0.021             | 0.083             | -0.234         |
|      | Ē      | 0.010              | 0.060            | -0.165            |        |                   |                   |                |
|      | F      | -0.027             | 0.004            | -0.018            |        |                   |                   |                |
| V    | Α      | -0.035             | 0.011            | 0.053             | a      | 0.057             | 0.017             | 0.073          |
|      | В      | -0.037             | -0.010           | 0.017             | c      | -0.043            | 0.025             | 0.061          |
|      | C      | -0.045             | -0.008           | 0.026             | d      | -0.048            | - 0.014           | 0.092          |
|      | D      | -0.050             | - 0.015          | -0.043            | e      | 0.050             | -0.002            | ~-0.061        |
|      | E<br>F | $-0.042 \\ -0.036$ | -0.017 $-0.012$  | -0.026 $0.017$    |        |                   |                   |                |
|      | 1.     | -0.030             | 0.012            | 0.017             |        |                   |                   |                |

ihrer Benzolringe 0.15 Å in **2**, verglichen mit 0.05 Å in **1**. Dieser Unterschied läßt vermuten, daß in **2** neben Effekt 1 auch die Möglichkeit 2 in Erscheinung tritt. Tatsächlich betragen die senkrechten Abstände von den Mittelpunkten der Linien, die die Zentren benachbarter exocyclischer Bindungen verknüpfen, zu den jeweiligen Benzolringen 0.146, 0.000, 0.115, 0.072 und 0.032 Å für Ringe I bis V, im Mittel 0.072 Å. (Die entsprechenden Werte für das *beobachtete* **1**-Molekül sind 0.010, 0.019 und 0.042 Å für Ring I bis III, im Mittel 0.024 Å.)

Alle Ringe zeigen Deformationen unterschiedlichen Grades (Effekt 3), um die beobachteten H...H- und C...C-Abstände zu erreichen. Letztere sind nicht so stark vom Verdrehungswinkel abhängig und zeigen nicht so große Unterschiede (Tab. 8) wie die H...H-Abstände, zu denen sie aber in der Variation gleichsinnig verlaufen. Der mittlere C...C-Abstand von 2.82 Å in 2 ist beträchtlich kürzer als der entsprechende Wert in 1 (2.96 Å). Der kürzeste H...H-Abstand von 1.84 Å in 2 (2.19 Å in 1) kann verglichen werden mit einem ebenso kurzen Wert von 1.85 Å (nahezu kollineare C—H-Bindungen) in 1.8-Bisdehydro-[14]annulen 11). Ein weiterer Effekt,

<sup>11)</sup> N. A. Bailey und R. Mason, Proc. Roy. Soc. [London], Scr. A 290, 94 (1966).


Tab. 8. Kurze intramolekulare Kontakte (Å) (1...3- und 1...4-Abstände)

| 2                                                                                                                                                                                                                                              |                                                                               | 1                                                                                                                                                                                                                                                                                                     |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $\begin{array}{cccc} A_{I} & \cdots B_{II} \\ F_{I} & \cdots A_{II} \\ A_{II} & \cdots B_{III} \\ F_{II} & \cdots A_{III} \\ A_{III} & \cdots B_{IV} \\ F_{III} & \cdots A_{IV} \\ A_{IV} & \cdots B_{V} \\ F_{IV} & \cdots B_{I} \end{array}$ | 2.453<br>2.445<br>2.459<br>2.470<br>2.459<br>2.440<br>2.478<br>2.461<br>2.446 | $\begin{array}{ccc} \mathbf{A_{I}} & \cdots \mathbf{B_{II}} \\ \mathbf{F_{I}} & \cdots \mathbf{A_{II}} \\ \mathbf{A_{II}} & \cdots \mathbf{B_{III}} \\ \mathbf{F_{II}} & \cdots \mathbf{A_{III}} \\ \mathbf{A_{III}} & \cdots \mathbf{B_{I}} \\ \mathbf{F_{III}} & \cdots \mathbf{A_{I}} \end{array}$ | 2.502<br>2.500<br>2.491<br>2.498<br>2.499<br>2.488 |
| $F_{V} \cdots A_{I}$ $A_{I} \cdots A_{II}$ $A_{II} \cdots A_{III}$ $A_{III} \cdots A_{IV}$ $A_{IV} \cdots A_{V}$ $A_{V} \cdots A_{I}$                                                                                                          | 2.482<br>2.819<br>2.839<br>2.812<br>2.801<br>2.812                            | $egin{array}{cccc} \mathbf{A}_1 & \cdots & \mathbf{A}_{11} \ \mathbf{A}_{11} & \cdots & \mathbf{A}_{11} \ \mathbf{A}_{111} & \cdots & \mathbf{A}_{1} \end{array}$                                                                                                                                     | 2.958<br>2.962<br>2.968                            |
| $\begin{array}{c} E_t & \cdots C_{Tt} \\ E_{11} & \cdots C_{Tt} \\ E_{n1} & \cdots C_{1v} \\ E_{rv} & \cdots C_v \\ E_v & \cdots C_t \end{array}$                                                                                              | 3.252<br>3.220<br>3.269<br>3.162<br>3.166                                     | $\begin{array}{ccc} E_1 & \cdots C_{11} \\ E_{11} & \cdots C_{1T} \\ E_{1T} & \cdots C_{T} \end{array}$                                                                                                                                                                                               | 3.013<br>3.049<br>3.057                            |
| $a_1 \cdots a_{II}$ $a_{III} \cdots a_{IV}$ $a_{II} \cdots a_{III}$ $a_1 \cdots a_{V}$ $a_{IV} \cdots a_{V}$                                                                                                                                   | 2.13<br>2.19<br>2.16<br>1.89<br>1.84                                          | $egin{array}{lll} a_1 & \cdots & a_{11} \\ a_{11} & \cdots & a_{111} \\ a_1 & \cdots & a_{111} \end{array}$                                                                                                                                                                                           | 2.19<br>2.30<br>2.27                               |

Kurze intramolekulare Kontakte (Å) (1...6-Abstände)

| 2                                    |                                      | 1                                                                                                      |                      |
|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|
| et ···CII eII···CIV eIV···CV ev···CI | 2.70<br>2.63<br>2.72<br>2.38<br>2.48 | e <sub>I</sub> ···c <sub>II</sub> e <sub>II</sub> ···c <sub>II</sub> e <sub>II</sub> ···c <sub>I</sub> | 2.21<br>2.38<br>2.33 |

der in 2 deutlich auftritt, ist die Abweichung des Kohlenstoffatoms D von der Ebene des Benzolrings in der gleichen Richtung wie die von A. Daraus resultiert für jeden Ring eine "Boot"-Konformation (Abbild. 2, siehe auch Tab. 4b und 5b). Ring III in 1, der am stärksten verdreht ist (24.7°), zeigt ebenfalls eindeutig den gleichen Effekt.



Abbild. 2. "Boot"-Konformation eines Benzolringes. Die Abweichungen von der eingezeichneten Ebene entsprechen für 1 und 2 den N-Koordinaten in Tab. 4b und 5b

Eine bootsförmige Gestalt von Benzolringen wurde auch für die drei [2.2]Metacyclophane 4<sup>12</sup>, 5<sup>13</sup> und 6<sup>14</sup> nachgewiesen.

$$H_2C$$
 $H$ 
 $CH_2$ 
 $H_2C$ 
 $CH_3$ 
 $CH_2$ 
 $H_2C$ 
 $CH_2$ 
 $CH_$ 

#### Bindungslängen und -winkel

Obwohl die Benzolringe keine regulären Sechsecke bilden, wie wir oben und im Abschnitt "Ergebnisse" gesehen haben, gehorchen die Bindungslängen und -winkel, deren gemittelte Werte in Abbild. 3 angegeben sind, der Symmetrie m. Die experimentell bestimmten Bindungslängen stehen für beide Verbindungen in befriedigender Übereinstimmung mit den von Ege und  $Fischer^{15}$ ) aus MO-SCF-Berechnungen für ebene Modelle ermittelten Werten, welche gleiche Bindungsordnungen für die entsprechenden Bindungen in beiden Molekülen ergeben hatten. 1 und 2 zeigen den gleichen Gang in den Bindungslängen; während jedoch der Unterschied zwischen  $\overline{AB}$ ,  $\overline{BC}$  und  $\overline{CD}$  in 1 deutlich in Erscheinung tritt, liegt er für 2 an der Grenze des eindeutig Feststellbaren.

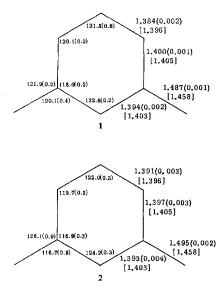
Hirshfeld und Rabinovich<sup>16)</sup> haben die Vermutung geäußert, daß der Austausch eines Wasserstoffatoms gegen ein Kohlenstoffatom an einem sp<sup>2</sup>-hybridisierten C-Atom die beiden anderen Bindungen dieses Atoms dehnt und den Winkel auf der Gegenseite dieses Substituenten zusammendrückt. Einige neuere Strukturanalysen unterstützen diesen Vorschlag, z. B. Biphenyl<sup>17)</sup>, p-Benzochinon<sup>18)</sup>, 2.5-Dimethylbenzochinon-(1.4)<sup>19)</sup>, Durochinon<sup>20)</sup>. Die Länge von  $\overline{AB}$  und  $\overline{BC}$  verglichen mit der von  $\overline{CD}$  unserer Verbindungen liefern einen weiteren Beweis, obwohl sich der Unterschied von  $\overline{AB}$  und  $\overline{BC}$  nicht so gut erklären läßt. Man kann den "Substituenteneffekt" auf die endocyclischen Bindungslängen durch eine Änderung in der Hybridisierung der Ringatome erklären. Der kleinere Effekt in 2 wird dann möglicherweise durch eine stärkere Abweichung von der ebenen Anordnung an der exocyclischen Bindung hervorgerufen. Die Unterschiede der Bindungslängen in den Benzolringen der [2.2]Metacyclophane, deren exocyclische Bindungen noch stärker deformiert sind,

<sup>12)</sup> C. J. Brown, J. chem. Soc. [London] 1953, 3278.

<sup>13)</sup> A. W. Hanson, Acta crystallogr. [Copenhagen] 15, 965 (1962).

<sup>14)</sup> M. Mathew, Acta crystallogr. [Copenhagen] B 24, 530 (1968).

<sup>15)</sup> G. Ege und H. Fischer, Tetrahedron [London] 23, 149 (1967).


<sup>16)</sup> F. L. Hirshfeld und D. Rabinovich, Acta crystallogr. [Copenhagen] 23, 989 (1967).

<sup>17)</sup> G. B. Robertson, Nature [London] 191, 593 (1961).

<sup>18)</sup> J. Trotter, Acta crystallogr. [Copenhagen] 13, 86 (1960).

<sup>19)</sup> D. Rabinovich und G. M. J. Schmidt, J. chem. Soc. [London] 1964, 2030.

<sup>&</sup>lt;sup>20)</sup> D. Rabinovich, G. M. J. Schmidt und E. Ubell, J. chem. Soc. [London] B 1967, 131.



Abbild. 3. Gemittelte Bindungslängen (Å) und -winkel und ihre Streuwerte. Die nach der MO-SCF-Methode berechneten Bindungslängen <sup>15)</sup> sind in eckiger Klammer

unterstützen allerdings nicht den obigen Erklärungsversuch; möglicherweise überdeckt jedoch der Effekt der Methylgruppe in den substituierten [2.2]Metacyclophanen die Wirkung der beiden *meta*-Substituenten. Zur Klärung dieses Problems wäre eine weitere Verfeinerung der Strukturanalyse des unsubstituierten [2.2]Metacyclophans und eine Strukturanalyse eines *meta*-substituierten Benzolderivates, das nicht dem "overcrowding effect" unterliegt, erforderlich.

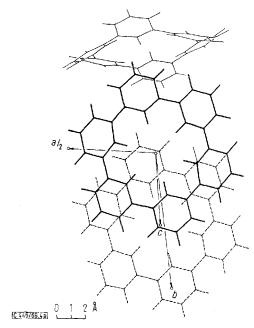
Die gemittelten Längen der exocyclischen Bindungen betragen für 1 1.487 und für 2 1.495 Å; der Unterschied liegt besonders unter Berücksichtigung der Streuung der einzelnen Werte außerhalb der Fehlergrenze. Die längere Bindung in 2 mag dadurch zustandekommen, daß die Substituenten stärker als in 1 von der Ebene ihrer Benzolringe abweichen und den sp<sup>2</sup>-Charakter der Atome B und F merklicher beeinflussen. Außerdem trägt zur Verlängerung der exocyclischen Bindung in 2 vermutlich der im Vergleich zu 1 stärkere "overcrowding effect" bei, der in den kürzeren 1...3- und 1. . .4-Abständen (Tab. 8) zum Ausdruck kommt. Jedenfalls bedarf die Länge der Bindung zwischen zwei Phenylgruppen näherer Klärung: Robertson<sup>17)</sup> berichtet 1.494 Å (nicht auf Libration korrigiert zum Vergleich mit unseren Daten; 1.497 Å nach der Korrektur) für diese Bindung im Biphenyl mit einem C. . . C-Abstand von 2.95 Å und H. . . H von 1.97 Å sowie einem Verdrehungswinkel von 0°. Aus Elektronen-Beugungs-Messungen erhielten Bastiansen und Traetteberg 21) einen Wert von 1.489 Å ( $\sigma = 0.0075$ ) bei einem Verdrehungswinkel von 42°. Man kann nun zur Klärung der Unterschiede in den Bindungslängen die Berechnungen von Fischer-Hjalmars 22) heranziehen, die darlegen, daß sich bei derartigen Verbindungen die

<sup>21)</sup> O. Bastiansen und M. Traetteberg, Tetrahedron [London] 17, 147 (1962).

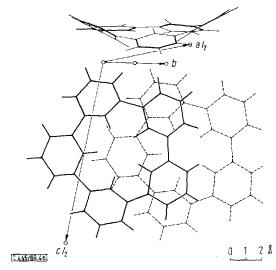
<sup>&</sup>lt;sup>22)</sup> I. Fischer-Hjalmars, Tetrahedron [London] 17, 235 (1962).

Abstoßungs- und Konjugationsenergie bei bestimmten Verdrehungswinkeln die Waage halten und sich daher ein Bindungslängenminimum in diesem Bereich ergibt. Auf unsere Beispiele übertragen würde das bedeuten, daß die Konjugationsenergie auf Grund fast gleicher Verdrehungswinkel (1: 19°, 2: 18°) für beide Substanzen etwa gleich wäre, während die Abstoßungsenergie für 2 (C...C 2.82, H...H 2.04 Å) höher wäre als für 1 (C...C 2.96, H...H 2.25 Å). Die Dehnung der Bindungslänge in 2 (1.495 Å) (1 1.487 Å) fände damit eine Erklärung.

Einige Bindungswinkel weichen in 1 und 2 eindeutig von 120° ab. Trotz der kleineren Streuung der endocyclischen Bindungslängen in 2 liegen die Bindungswinkel weiter auseinander als bei 1. Die Aufweitung der Winkel BAF auf 122.6 in 1 und auf 124.2° in 2 ermöglicht einen größeren Ringumfang der inneren Kohlenstoffatome und mildert dadurch die Überlappung der Atome im zentralen Bereich.

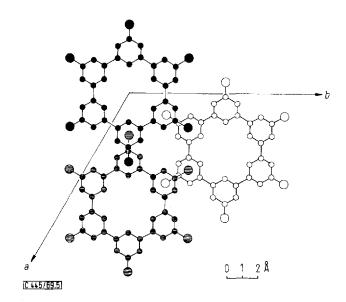

Als Folge davon werden die Winkel CDE auf 121.3 und 122.0° aufgeweitet und die Winkel ABC auf 118.0 und 116.9° (jeweils für 1 und 2) verkleinert, womit die Winkeldeformationen innerhalb der Ringe gegenseitig ausgeglichen werden. Die Verringerung des Winkels ABC kann teilweise auch auf den "Substituenteneffekt" zurückgeführt werden. So liegt z. B. im Biphenyl der endocyclische Winkel am substituierten C-Atom bei 116.8°. Die relative molekulare Ringgröße und der Grad des "overcrowding effect" drückt sich bei 1 und 2 in den Unterschieden der Winkel ABF' (120.1, 116.7°) und F'BC (121.9, 126.1°) aus. Daher sind auch in 1 die E. . . C'-Abstände nur geringfügig größer als die A. . . A'-Abstände, d. h. die o. . . o-Wechselwirkungen sind etwa gleich für die inneren und äußeren Paare von C-Atomen. In 2 rufen die größeren Abweichungen der Winkel von 120° eindeutig längere Außenabstände (E. . . C') im Vergleich zu den inneren hervor (Tab. 8).

#### Packung der Moleküle im Kristall


Beide Kristallstrukturen kann man sich aufgebaut denken aus Molekülstapeln entlang der kurzen [001]- bzw. [010]-Achsen, die dann durch zweizählige Schraubenachsen entlang [010] miteinander in Beziehung stehen. Die mittleren Molekülebenen bilden Winkel von 36.3° (1) bzw. 42.7° (2) mit der Stapelachse. Beide Moleküle kristallisieren also in dem Packungstyp "flacher Scheiben", wie er für Kohlenwasserstoffe, z. B. Coronen oder [18]Annulen, bezeichnend ist. Die Projektionen entlang der N-Achsen (Abbild. 4a und b) zeigen die Moleküle, die entlang der kurzen Achse translationsbezogen sind, in solcher Anordnung, daß ein Benzolring sich über das Zentrum des Nachbarmoleküls einfügt.

Wie in vielen anderen Strukturen liegen die Kohlenstoffatome im zentralen Bereich der Nachbarbenzolringe oder deren C-C-Bindungen und versuchen so direkte Überlappung zu vermeiden. Der Abstand der mittleren Ebenen beträgt 3.62 für 1 und 3.74 Å für 2.

Der aus den Gitterkonstanten, der Raumgruppe, den Molekulardimensionen und der Anzahl der Moleküle in der Elementarzelle sich ergebende Packungsvorschlag für 3 wird in Abbild. 5 gezeigt. Das hervorstechende Merkmal dieser Struktur ist die Durchdringung der Schichten, die durch translationsbezogene Benzolringe gebildet werden, durch die Methylgruppen der Nachbarmoleküle. Da andere kurze Abstände




Abbild. 4a. Packungsanordnung der Moleküle von 1, betrachtet entlang der Senkrechten auf die mittlere Molekelebene



Abbild. 4b. Packungsanordnung der Moleküle von 2, betrachtet entlang der Senkrechten auf die mittlere Molekelebene

fehlen, ist die Struktur locker gepackt und daher die Dichte niedrig im Vergleich mit der unsubstituierten Verbindung. Tatsächlich halten die Kristalle Lösungsmittel, aus dem umkristallisiert wurde, so zäh fest, daß es auch nicht im Hochvakuum völlig entfernt werden kann. Folglich ist die gemessene Dichte höher als der aus den Gitterkonstanten berechnete Wert und ändert sich außerdem mit dem Lösungsmittel (Tab. 11). Die starke thermische Streuung, auf die bereits hingewiesen wurde, ist ein weiteres Anzeichen für die lockere Packung der Struktur.



Abbild. 5. Packungsvorschlag für 3, betrachtet entlang [001]

Die kurzen intermolekularen Abstände für 1 und 2 stehen in Tab. 9 und 10. Das symmetrisierte Modell von 1 zeigt nahe Kontakte von C...C < 3.4, C...H < 2.8 und H...H < 2.5 Å, die in der realen Struktur nicht vorhanden sind. Folglich liegt der höhere Anteil an den C...C-Kontaktbereichen 3.2-3.7, 2.7-3.3 und 2.2-2.8 Å für das symmetrisierte Modell auf Seiten der kürzeren Abstände und ist daher auch in dieser Orientierung wahrscheinlich weniger stabil. Die Abweichungen von der Symmetrie  $\bar{3}$  m, die durch das Gitter hervorgerufen werden, finden ihre Erklärung bei der Untersuchung naher intermolekularer Kontakte. Diese treten auf zwischen Atomen von Ring II und II sowie II und I von c-translationsbezogenen Molekülen. Auf Grund dieses "Druckes" werden Ring I und II näher zur mittleren Molekülebene zurückgedreht ( $15^{\circ}$ ,  $17^{\circ}$ ), wodurch andererseits Ring III weggedreht werden muß ( $25^{\circ}$ ).

Schließlich seien noch einige Folgerungen diskutiert, die sich aus den Strukturdaten ergeben. Die Konformation von 1 und 2 in Lösung wird höchstwahrscheinlich die Symmetrie  $\tilde{3}$  (oder sogar  $\tilde{3}$  m) bzw. 2 haben. Die Kernresonanzergebnisse zeigen, daß sämtliche inneren Protonen sowohl in 1 als auch in 2, das den stärkeren "overcrowding effect" aufweist, bis zu einer Temperatur von  $-60^{\circ}$  identisch sind<sup>3)</sup>. In 2 mit Symmetrie 2 sind jedoch wegen verschiedener chemischer Umgebung drei Arten von Protonen zu erwarten.

Tab. 9. Intermolekulare Abstände (Å) von 1. Als Grenzradien wurden für C 1.85 und für H 1.40 Å festgesetzt

| A <sub>000</sub> *                  | *) A <sub>100</sub>                 |      | A <sub>000</sub>           | A <sub>001</sub>               |      |
|-------------------------------------|-------------------------------------|------|----------------------------|--------------------------------|------|
| $C_{\mathrm{m}}$                    | C <sub>I</sub>                      | 3.12 | $D_{\Pi}$                  | $\mathbf{A}_{\mathrm{III}}$    | 3.60 |
| $D_{III}$                           | c <sub>1</sub>                      | 2.92 | $\mathbf{D}_{\mathrm{II}}$ | an                             | 2.99 |
|                                     |                                     |      | $E_{II}$                   | $\mathbf{A}_{\mathrm{III}}$    | 3.62 |
|                                     | $\overline{\mathbf{A}}_{reve{1}00}$ |      | $\mathbf{E}_{\mathbf{H}}$  | $\mathbf{F}_{\mathbf{m}}$      | 3.48 |
| $\mathbf{E}_{\mathbf{m}}$           | $\mathbf{E}_{\mathbf{III}}$         | 3.59 | $d_{II}$                   | $a_{II}$                       | 2.51 |
|                                     | $\mathbf{A}_{00}\mathbf{\tilde{1}}$ |      |                            | $\overline{\mathbf{A}}_{001}$  |      |
| $\mathbf{A}_{\mathbf{U}}$           | $d_{11}$                            | 3.07 | $\mathbf{A}_1$             | $\mathbf{E}_{\mathbf{n}}$      | 3.44 |
| $\mathbf{B}_{111}$                  | $\mathbf{d}_{1t}$                   | 3.23 | $A_{I}$                    | $F_{II}$                       | 3.42 |
| $\mathbf{E}_{\mathbf{III}}$         | $e_{\mathrm{II}}$                   | 3.06 | $F_{\mathbf{I}}$           | $\mathbf{A}_{\mathrm{III}}$    | 3.67 |
| $\mathbf{F}_{\mathbf{III}}$         | $e_{II}$                            | 2.97 | $F_{\mathbf{I}}$           | $\mathbf{a}_{\mathbf{III}}$    | 3.25 |
|                                     | D                                   |      | $\mathbf{B}_{\mathbf{II}}$ | $a_{\mathrm{III}}$             | 3.25 |
|                                     | $\mathbf{B}_{00\bar{1}}$            |      | $\mathbf{C}_{\mathrm{II}}$ | $\mathbf{a}_{111}$             | 3.13 |
| $D_{I}$                             | $\mathbf{c}_{\mathrm{I}}$           | 2.91 | $\mathbf{D}_{tt}$          | $a_{\scriptscriptstyle \rm I}$ | 3.16 |
| $E_{I}$                             | $e_{\text{I}}$                      | 2.83 | $E_{Ii}$                   | $\mathbf{a_{I}}$               | 2.94 |
| $E_{\mathbf{I}}$                    | $c_{II}$                            | 3.17 | $\mathbf{F}_{\mathrm{II}}$ | $\mathbf{a_I}$                 | 3.10 |
| $F_{I}$                             | $e_{I}$                             | 3.15 |                            | $\mathbf{A}_{100}$             |      |
| $A_{II}$                            | $d_{II}$                            | 3.12 |                            |                                |      |
| $\mathbf{B}_{\mathbf{II}}$          | $C_{II}$                            | 3.67 | $c_{T}$                    | $d_{III}$                      | 2.69 |
| $\mathbf{B}_{\mathbf{II}}$          | $\mathbf{D_{II}}$                   | 3.69 |                            | $B_{100}$                      |      |
| $\mathbf{B}_{11}$                   | $d_{\Pi}$                           | 3.23 |                            |                                |      |
| $C_{\text{II}}$                     | $d_{\mathbf{II}}$                   | 3.18 | $d_1$                      | $d_{ m IR}$                    | 2.70 |
| $\mathbf{p}_{\mathbf{n}}$           | $d_{11}$                            | 3.00 |                            | $A_{101}$                      |      |
| Eπ                                  | dп                                  | 2.89 |                            |                                |      |
| $F_{II}$                            | $q_{11}$                            | 2.98 | $C_{t}$                    | епп                            | 2.91 |
|                                     | ${\bf B}_{000}$                     |      | $\mathbf{D}_{\mathbf{I}}$  | $\mathbf{d}_{\mathbf{III}}$    | 3.11 |
| T)                                  | = = = :                             | 2 45 | $\mathbf{D}_{t}$           | $e_{III}$                      | 3.17 |
| $D^{II}$                            | $\mathbf{A}_{\mathbf{\Pi}}$         | 3.47 | C1                         | em                             | 2.62 |
| $\mathbf{D}_{\mathtt{II}}$          | $\mathbf{F}^{\mathbf{n}}$           | 3.50 | $d_{T}$                    | $d_{111}$                      | 2.54 |
| *) Koordinaten äquiv                | alenter Lagen                       |      | Symbol                     |                                |      |
| $\frac{x}{x}\frac{y}{y}\frac{z}{z}$ |                                     |      | A                          |                                |      |
| $\tilde{x}^{1/2} + v^{1/2}$         | 1 <sub>2</sub> z                    |      | A<br>A<br>B                |                                |      |
| $x^{1/2}-y^{1/2}$                   | 2 - z                               |      | B                          |                                |      |

Läßt man ein zufälliges Zusammentreffen der Protonenresonanzsignale außer acht, dann muß die Aktivierungsenergie der Umklappvorgänge, durch die das Singlett zustandekommen könnte, gering sein. Im Hinblick auf einen solchen Prozeß betrachten wir eine Racemisierungsmöglichkeit für das nichtebene 2-Molekül mit Symmetrie 2. Wir teilen jedem der fünf Ringe (I-V) einen Verdrehungswinkel zu:  $0, -\alpha_1, \alpha_2, -\alpha_2, \alpha_1,$  wobei  $|\alpha_1| > |\alpha_2|$  sein soll. Wenn nun die Ringe I, II und III ihre Winkel ändern und die Werte  $-\alpha_1$ , 0,  $\alpha_1$  einnehmen, müssen nur die Wasserstoffatome der Ringe I und II bei einem Winkel von  $-\alpha_{ij}$ , aneinander vorbeigleiten, während sie nicht auf einen nahen Abstand zu den Protonen anderer Ringe kommen. Aus der Wiederholung dieses Vorgangs, bei dem jeder der fünf Ringe nacheinander einen Verdrehungswinkel von 0° einnimmt, ergibt sich das Spiegelbildisomere des Ausgangszustandes. Auf diese Weise erreicht man eine zeitlich gemittelte Äquivalenz der Protonen. Es läßt sich daher voraussagen, daß Versuche, die optisch aktive Form von 2 aus Einkristallen der P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>-Modifikation zu isolieren, kaum zum Erfolg führen,

 $x^{-1/2}-y^{-1/2}+z$ A<sub>pqr</sub> bezeichnet die Koordinaten p+x, q+y, r+z,

Tab. 10. Intermolekulare Abstände (Å) von **2**. Als Grenzradien wurden für C 1.85 und für H 1.40 Å festgesetzt

|                                     |                                              | 1.40 / 1 10 | Sigescizi                   |                               |      |  |
|-------------------------------------|----------------------------------------------|-------------|-----------------------------|-------------------------------|------|--|
| A <sub>000</sub> *)                 | $\mathbf{B}_{0\overline{1}\overline{1}}$     |             | A <sub>000</sub>            | B <sub>000</sub>              |      |  |
| $C_{I}$                             | $d_{III}$                                    | 2.94        | $\mathbf{E}_{\mathbf{m}}$   | $d_{\mathrm{V}}$              | 3.23 |  |
| CI                                  | CIII                                         | 2.76        | $\mathbf{E}_{	ext{III}}$    | $e_V$                         | 3.14 |  |
|                                     |                                              |             | $d_{\mathrm{III}}$          | $e_V$                         | 2.75 |  |
|                                     | $\mathbf{A}_{0\overline{1}0}$                |             | $e_{111}$                   | $d_{\mathrm{V}}$              | 2.70 |  |
|                                     |                                              |             | $e_{111}$                   | $e_V$                         | 2.43 |  |
| $\mathbf{A_{I}}$                    | $\mathbf{B}_{\mathrm{V}}$                    | 3.59        |                             |                               |      |  |
| $\mathbf{A}_{\mathrm{I}}$           | $C_{v}$                                      | 3.47        |                             | $A_{010}$                     |      |  |
| $A_1$                               | $D_{V}$                                      | 3.50        |                             | ***                           |      |  |
| $A_{I}$                             | $\mathbf{E}_{\mathbf{V}}$                    | 3.67        | $\mathbf{A}_{11}$           | $d_{11}$                      | 2.87 |  |
| $\mathbf{A}_{\mathtt{II}}$          | $\mathbf{A}_{\mathbf{I}\mathbf{V}}$          | 3.65        | $\mathbf{F}_{\mathbf{n}}$   | $\mathbf{d}_{11}$             | 3.24 |  |
| $\mathbf{A}_{11}$                   | $a_{\scriptscriptstyle \mathrm{IV}}$         | 3.23        | $C_{111}$                   | $e_{II}$                      | 3.22 |  |
| $B_{II}$                            | $A_{V}$                                      | 3.64        | $\mathbf{D}_{\mathbf{m}}$   | $e_{II}$                      | 3.12 |  |
| $C_{II}$                            | $a_{II}$                                     | 3.13        | $\mathbf{E}_{\mathrm{III}}$ | $\mathbf{e_{II}}$             | 3.10 |  |
| $\mathbf{D_{II}}$                   | $\mathbf{A}_{\mathbf{I}\mathbf{J}}$          | 3.38        | $\mathbf{F}_{\mathbf{m}}$   | $e_{II}$                      | 3.22 |  |
| $\mathbf{D_{II}}$                   | $\mathbf{a}_{\text{II}}$                     | 2.79        | $\mathbf{A}_{\mathrm{IV}}$  | $a_{III}$                     | 3.25 |  |
| $D_{II}$                            | $a_{IV}$                                     | 3.25        | $F_{IV}$                    | $\mathbf{a}_{\text{HI}}$      | 3.23 |  |
| $\mathbf{E}_{\mathbf{I}\mathbf{I}}$ | $\mathbf{A}_{\mathbf{III}}$                  | 3.61        | Bv                          | $\mathbf{a}_{\mathtt{I}}$     | 2.91 |  |
| $\mathbf{E}_{\mathbf{H}}$           | $\mathbf{F_{III}}$                           | 3.52        | $C_{\rm V}$                 | $\mathbf{a}_1$                | 2.90 |  |
| $\mathbf{E}_{\mathbf{H}}$           | $a_{1v}$                                     | 3.09        |                             | -                             |      |  |
| $\mathbf{F}_{11}$                   | $A_{IV}$                                     | 3.43        |                             | $\mathbf{B}_{1\overline{1}0}$ |      |  |
| $\mathbf{F}_{\mathbf{II}}$          | $a_{IV}$                                     | 3.07        |                             |                               |      |  |
| $q_{II}$                            | $a_{11}$                                     | 2.55        | $\mathbf{D}_{\mathbf{IV}}$  | $d_{\rm V}$                   | 3.02 |  |
|                                     |                                              |             | $E_{1V}$                    | Cv                            | 3.14 |  |
|                                     | $\overline{\mathbf{A}}_{0\overline{1}0}$     |             | $E_{IV}$                    | $d_{ m V}$                    | 3.01 |  |
|                                     |                                              |             | $\mathbf{F}_{\mathbf{IV}}$  | $c_{V}$                       | 3.18 |  |
| $D_1$                               | $\mathbf{D}_{\scriptscriptstyle \mathrm{I}}$ | 3.64        | $\mathbf{B}_{\mathrm{V}}$   | $c_{V}$                       | 3.03 |  |
| $\mathbf{D_{i}}$                    | $d_1$                                        | 3.11        | $C_{V}$                     | $\mathbf{e}_{\mathrm{IV}}$    | 3.02 |  |
| $\mathbf{E}_{\mathbf{I}}$           | $d_{I}$                                      | 3.15        | $C_{v}$                     | Cv                            | 3.17 |  |
|                                     |                                              |             | $D_{V}$                     | $e_{1V}$                      | 2.82 |  |
|                                     | $\mathbf{B}_{00\overline{1}}$                |             | $E_{V}$                     | $ m d_{IV}$                   | 3.25 |  |
|                                     |                                              |             | $E_{v}$                     | $e_{IV}$                      | 2.98 |  |
| $\mathbf{E}_{\mathbf{v}}$           | $e_{III}$                                    | 3.13        |                             |                               |      |  |
|                                     | $\overline{\mathbf{A}}_{000}$                |             |                             | $\mathbf{ar{B}}_{100}$        |      |  |
| $C_{I}$                             | $\mathbf{d}_{\mathrm{I}}$                    | 3.05        | $E_{IV}$                    | $\mathbf{D}_{\mathrm{v}}$     | 3.62 |  |
| $\mathbf{D}_{1}$                    | Cī                                           | 3.23        | DI.                         | 2,                            | 3.02 |  |
| $d_{\tau}$                          | C <sub>I</sub>                               | 2.32        |                             | $\overline{\mathbf{A}}_{101}$ |      |  |
|                                     | •.                                           |             | Е                           |                               | 3.21 |  |
|                                     | $\overline{\mathbf{B}}_{000}$                |             | Fm                          | CIV                           | 3.13 |  |
| $\mathbf{B}_{II}$                   | $D_{II}$                                     | 3.65        | $C_{IV}$                    | CIV                           | 2.64 |  |
| B <sub>II</sub>                     | $d_{n}$                                      | 3.04        | $c_{IV}$                    | $c_{IV}$                      | 2.04 |  |
| CII                                 | Dπ                                           | 3.64        |                             |                               |      |  |
| C <sub>II</sub>                     | d <sub>n</sub>                               | 2.77        |                             |                               |      |  |
| $D_{II}$                            | $d_{11}$                                     | 2.86        |                             |                               |      |  |
| $\mathbf{E}_{\mathbf{H}}$           | $d_{11}$                                     | 3.25        |                             |                               |      |  |
| EII                                 | d II                                         | 3.43        |                             |                               |      |  |

<sup>\*)</sup> Siehe Fußnote von Tab. 9.

Besonderen Dank schulden wir Herrn Prof. Dr. H. A. Staab für die Anregung zu dieser Arbeit und sein stetiges Interesse. Diese und die vorausgehende Arbeit wurden durch die Unterstützung der Deutschen Forschungsgemeinschaft, Bad Godesberg, durch Stipendien der Stiftung Volkswagenwerk gefördert. Wir danken Herrn Prof. Dr. W. Gentner, Max-Planck-Institut für Kernphysik, und Herrn Prof. Dr. F. Filthuth, Institut für Hochenergiephysik der Universität Heidelberg, und ihren Mitarbeitern für Unterstützung bei unseren Rechenarbeiten.

#### Beschreibung der Versuche

Tab. 11 zeigt die kristallographischen Daten einiger Poly-m-phenylene. Die Gitterkonstanten von 1 und 2 wurden nach der Methode der kleinsten Quadrate aus 56 bzw. 76 Reflexen hoher Ordnung bestimmt, die auf einem mit Lochstreifen gesteuerten Siemens-Diffraktometer mit  $Mo_{K\alpha}$ -Strahlung (2 = 0.70926 Å) vermessen wurden. Die Intensitäten der beiden Kristalle, deren Abmessungen in Tab. 12 angegeben sind, erfaßten wir mit MoKa-Strahlung in einem Bereich bis zu sin  $\Theta/\lambda = 0.66$ . Für 1, dessen Kristall entlang  $b^*$  gesetzt war, wurden die Reflexe der zwei Quadranten I(hkl) und I(hkl) mit einer Schrittgeschwindigkeit von 0.24 Sek./0.02° in 2 @ gemessen und nach der Korrektur die symmetriebezogenen Werte gemittelt.

Tab. 11. Kristallographische Konstanten einiger Poly-m-phenylene

C<sub>36</sub>H<sub>24</sub>; Mol.-Gew. 456.2; Schmp. 510°. Die Kristalle wurden aus sich langsam abkühlender 1-Chlor-naphthalin-Lösung gezüchtet.

```
a = 12.458 \text{ Å}
                                          \sigma(a) = 0.002 \text{ Å}
b = 15.653
                                           \sigma(b)=0.002
c = 6.109
                                          \sigma(c) = 0.002
\beta = 99.65^{\circ}
                                          \sigma (\beta) = 0.03^{\circ}
```

Auslöschungen: h0l für l ungerade, 0k0 für k ungerade

```
Raumgruppe: P2_1/c

V = 1174.4 \text{ Å}^3; D_{ber.} = 1.29 \text{ g} \cdot \text{cm}^{-3} \text{ für } z = 2
```

 $\mu(\text{MoK}_{\alpha}) = 0.79 \text{ cm}^{-1}; F(000) = 480$ 

Molekularsymmetrie: 1

C<sub>30</sub>H<sub>20</sub>; Mol.-Gew. 380.2; Schmp. 344°. Die Kristalle wurden aus sich langsam abkühlender Cyclohexan/Toluol-Lösung (3:1) gezüchtet.

Monokline Form:

```
a = 16.418 \text{ Å}
                                       \sigma(a) = 0.003 \text{ Å}
b = 5.511
                                       \sigma(b) = 0.001
c - 23.847
                                       \sigma(c) = 0.007
\beta = 113.91^{\circ}
                                       \sigma (3) = 0.03°
```

Auslöschungen: h0l für l ungerade, 0k0 für k ungerade;

Raumgruppe:  $P2_1/c$ 

```
V = 1972.7 \text{ Å}^3; D_{ber.} = 1.28 \text{ g} \cdot \text{cm}^{-3} \text{ für } z = 4
```

 $\mu \text{ (MoK}\alpha) = 0.78 \text{ cm}^{-1}; F(000) = 800$ 

Molekularsymmetrie: 1

Orthorhombische Form: a = 21.68; b = 16.74; c = 5.37 Å

Auslöschungen: h00 für h ungerade, 0k0 für k ungerade, 00l für / ungerade

Raumgruppe:  $P2_12_12_1$ 

 $V = 1951 \text{ Å}^3$ ;  $D_{ber} = 1.24 \text{ g} \cdot \text{cm}^{-3} \text{ für } z = 4$ 

Molekularsymmetrie: 1

C<sub>42</sub>H<sub>36</sub>; Mol.-Gew. 540.8; Schmp. 456°. Die Kristalle wurden aus sich langsam abkühlender Toluol-Lösung gezüchtet.

```
Hexagonale Aufstellung: a = 7.56; c = 20.0 \text{ Å}
Auslöschungen: hkil für -h+k+l=3 n
```

Rhomboedrische Aufstellung: a = 11.82 Å;  $\alpha = 115.6^{\circ}$ 

Raumgruppe:  $R \bar{3}$  oder  $R \bar{3}$  m

 $V \text{ (hexagonal)} = 2620 \text{ Å}^3; D_{ber.} = 1.03 \text{ g} \cdot \text{cm}^{-3} \text{ für } z = 3$ 

 $D_{beob.} = 1.18 \text{ g} \cdot \text{cm}^{-3} \text{ für aus Xylol gezüchtete Kristalle}$ 

Dbeob. = 1.29 g·cm<sup>-3</sup> für aus Brombenzol gezüchtete Kristalle

Molekularsymmetrie:  $\overline{3}$  oder  $\overline{3}$  m

Tab. 12. Kristallabmessungen (mm).

Die Werte geben die Abstände der Flächen vom Schnittpunkt der mit einem Stern markierten Flächen an. Der Absorptionsfaktor A wurde mit einem Gaußschen Gitter, das 216 Punkte enthielt, berechnet

|    |   |     | 1       |        |        |                      | 2            |
|----|---|-----|---------|--------|--------|----------------------|--------------|
| (h | k | l)  | Abstand | (h     | k      | I)                   | Abstand      |
| 1  | 0 | 0*  | 0       | 1      | 0      | 0 *                  | 0            |
| Ī  | 0 | 0   | 0.14    | ī      | 0      | 0                    | 0.33         |
| 0  | 1 | 0 * | 0       | 0      | 1      | 0 *                  | 0            |
| 0  | Ī | 0   | 0.19    | 0      | ī      | 0                    | 0.39         |
| 0  | 0 | 1 * | 0       | 0      | 0      | 1 *                  | 0            |
| 0  | 0 | Ī   | 0.14    | 0<br>5 | 0<br>Ī | <u>ī</u><br><u>ā</u> | 0.27<br>0.15 |

Die Einzelheiten des Meßverfahrens, die Definition der  $I_t$ -Werte und die Bestimmung der Gewichte w(hkl) wurden in der vorhergehenden Veröffentlichung<sup>1)</sup> beschrieben. Von den 2845 erfaßten I(hkl) erhielten 1221 den  $I_t$ -Wert. Die Intensitäten für 2, dessen Kristall ebenfalls entlang  $b^*$  gesetzt war, wurde in einem Quadranten mit einer Schrittgeschwindigkeit von 0.6 Sek./0.02° in 2  $\Theta$  vermessen. Aus 4791 gewonnen I(hkl) waren 1254 nicht beobachtet gemäß obiger Definition. Um die Extinktion experimentell zu berücksichtigen, wurden in beiden Strukturen die stärksten Reflexe mit einem in flüssigem Stickstoff abgeschreckten Kristall nachgemessen, dessen Volumen 1/30 bis 1/40 des ersten Kristalls betrug. Absorptionskorrekturen  $^{23}$ , die nicht über  $^{2}$ 6 stiegen, wurden vorgenommen. Mögliche Doppel-Reflex-Effekte haben wir vernachlässigt.

Die Struktur von 1 wurde durch eine zugespitzte Patterson-Projektion  ${}^{8}P$  (x, y) gelöst; nachdem die (x, y)-Koordinaten mit einem Kleinste-Quadrate-Programm verbessert waren, erhielten wir die z-Koordinaten durch "trial and error". Zur Lösung der Struktur von 2 verwendeten wir die Symboladdition-Methode  ${}^{24}$ ). Eine mit 317 E(hkl)-Werten (E(hkl)>1.6) berechnete Elektronendichte ergab ein Modell, dessen R-Wert  $(R = \frac{\sum |kF_0 - |F_c|}{\sum kF_o})$  mit 760 Reflexen niedriger Ordnung bei der Verbesserung in zwei Kleinste-Quadrat-Zyklen von 0.30 auf 0.12 sank. Ein Vergleich der auf diese Weise gewonnenen Vorzeichen mit den nach vollständiger Verbesserung erhaltenen endgültigen Ergebnissen zeigte, daß alle 317 Reflexe richtig bestimmt waren.

#### Verbesserung der Parameter

Die Kleinste-Quadrat-Verfeinerung wurde in Block-Matritzen-Form ausgeführt. Jeder Block enthielt die Koordinaten und anisotropen thermischen Parameter von sechs Kohlenstoffatomen eines Benzolringes und die Koordinaten und isotropen thermischen Parameter der dazugehörigen vier Wasserstoffatome. Der für die Gesamtheit geltende Skalenfaktor wurde einem Block zugeschlagen. Die Verfeinerungen wurden beendet, als die Verschiebungen aller Parameter auf weniger als ein Zehntel der entsprechenden Standardabweichungen gesunken waren. In diesem Stadium betrugen die Zuverlässigkeitsfaktoren R = 0.053 (einschließlich nicht beobachteter Reflexe), 0.047 (nicht beobachtete Reflexe ausgeschlossen)

<sup>23)</sup> Ph. Coppens, L. Leiserowitz und D. Rabinovich, Acta crystallogr. [Copenhagen] 18, 1035 (1965).

<sup>&</sup>lt;sup>24)</sup> J. Karle und I. L. Karle, Acta crystallogr. [Copenhagen] 21, 849 (1966).

für 1 und 0.053 bzw. 0.050 für 2. Der letzte Verfeinerungszyklus von 1 enthielt 177 (aus einer Gesamtzahl von 1221)  $F_t$ -Werte ( $F_t$ :  $|F_c| > kF_o$ ). F(040) bekam das Gewicht Null wegen des großen Unterschiedes zwischen  $kF_o$  (120.7) und  $F_c$  (-141.0). Anscheinend war der offensichtliche Sekundärextinktionsfehler experimentell nicht hinreichend ausgemerzt. Bei 2 wurden 330  $F_t$ -Werte aus einer Gesamtzahl von 1254 im letzten Verbesserungszyklus miteingeschlossen. Zehn Reflexe niedriger Ordnung und mit hohem F-Wert erhielten das Gewicht Null, da ihr  $kF_o$  beträchtlich kleiner als ihr  $|F_c|$  war.

Folgende Atomformfaktorenkurven wurden verwendet:  $f_c^{(25)}$ ,  $f_H^{(26)}$ .

<sup>26)</sup> R. McWeeny, Acta crystallogr. [Copenhagen] 4, 513 (1951).

[445/69]

<sup>25)</sup> J. Berghuis, I. J. M. Haanappel, M. Potters, B. O. Loopstra, C. H. MacGillavry und A. L. Veenendaal, Acta crystallogr. [Copenhagen] 8, 478 (1955).